Simulation based engineering in fluid flow design

This volume offers a tool for High Performance Computing (HPC). A brief historical background on the subject is first given. Fluid Statics dealing with Pressure in fluids at rest, Buoyancy and Basics of Thermodynamics are next presented. The Finite Volume Method, the most convenient process for HPC,...

Full description

Saved in:
Bibliographic Details
Main Author: Rao, J. S., (Author)
Format: eBook
Language: English
Published: Cham, Switzerland : Springer, [2017]
Subjects:
ISBN: 9783319463827
9783319463810
Physical Description: 1 online resource

Cover

Table of contents

LEADER 05144cam a2200409Ii 4500
001 99786
003 CZ-ZlUTB
005 20240914112223.0
006 m o d
007 cr cnu|||unuuu
008 170207s2017 sz o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d GW5XE  |d N$T  |d IDEBK  |d YDX  |d OCLCF  |d NJR  |d UAB  |d COO  |d IOG  |d AZU  |d UWO  |d UPM  |d ESU  |d Z5A  |d JBG  |d IAD  |d ICW  |d ICN  |d OTZ  |d OCLCQ  |d VT2  |d U3W  |d CAUOI  |d KSU  |d EZ9  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d UKMGB  |d OCLCQ  |d ERF  |d UKBTH  |d LEATE  |d OCLCQ 
020 |a 9783319463827  |q (electronic bk.) 
020 |z 9783319463810  |q (print) 
024 7 |a 10.1007/978-3-319-46382-7  |2 doi 
035 |a (OCoLC)971542220  |z (OCoLC)971594332  |z (OCoLC)971929538  |z (OCoLC)972125995  |z (OCoLC)972234840  |z (OCoLC)972393594  |z (OCoLC)972538653  |z (OCoLC)972953840  |z (OCoLC)981821385  |z (OCoLC)1005837634  |z (OCoLC)1011987500  |z (OCoLC)1048159377  |z (OCoLC)1058277081  |z (OCoLC)1066679414  |z (OCoLC)1086453732  |z (OCoLC)1112596289  |z (OCoLC)1112857753  |z (OCoLC)1113665923  |z (OCoLC)1116048698  |z (OCoLC)1122811827  |z (OCoLC)1127218413 
100 1 |a Rao, J. S.,  |e author. 
245 1 0 |a Simulation based engineering in fluid flow design /  |c J.S. Raso. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2017] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
505 0 |a 1. Introduction -- 2. Fluid Statics -- 2.1 States of Matter -- 2.2 Pressure in fluids at rest -- 2.3 Buoyancy -- 2.4 Basics of Thermodynamics -- 3. Fluid Dynamics -- 3.1 Characteristics of Fluids -- 3.2 Mass Balance -- 3.3 Force Balance and Momentum Equations -- 3.4 Energy Equation -- 3.5 Kinetic Energy -- 3.6 Internal Energy -- 3.7 Shear Stresses -- 3.8 Equations of Motion -- 3.9 Summary of Fluid Flow Equations -- 4. Finite Volume Method : Diffusion Problems -- 4.1 Diffusion Problem -- 4.2 Diffusion with Source Term -- 4.3 Diffusion with Convection -- 5. Finite Volume Method : Convection-Diffusion Problems -- 5.1 Steady State one-dimensional convection and diffusion -- 6. Pressure Velocity Coupling in Steady Flows-- 6.1 Steady State one-dimensional incompressible problem -- 6.2 Pitot and Venturi Tubes -- 6.3 Stagnation Conditions in Adiabatic Flow -- 6.4 Isentropic Flow -- 6.5 Speed of Sound -- 6.6 Shocks in Supersonic Flow -- 6.7 Other Forms of Energy Equation for Adiabatic Flow -- 6.8 Quasi-One dimensional Flow -- 6.9 Area-Velocity relation -- 6.10 Example of Nozzle Flow? Subsonic Flow throughout -- 6.11 Nozzle Flow? Subsonic Flow with Sonic Conditions at the Throat -- 6.12 Nozzle Flow? Supersonic Flow with Perfect Expansion -- 6.13 CFD Solution of Isentropic Flow in Converging-Diverging Nozzles -- 7. Turbulence -- 7.1 What is Turbulence? -- 7.2 Reynolds Equations -- 7.3 Nozzle Flow with a Normal Shock in the Divergent Portion -- 7.4 CFD Solution of Flow in Converging-Diverging Nozzles with a Normal Shock -- 8. Epilogue -- Index. 
500 |a Includes index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This volume offers a tool for High Performance Computing (HPC). A brief historical background on the subject is first given. Fluid Statics dealing with Pressure in fluids at rest, Buoyancy and Basics of Thermodynamics are next presented. The Finite Volume Method, the most convenient process for HPC, is explained in one-dimensional approach to diffusion with convection and pressure velocity coupling. Adiabatic, isentropic and supersonic flows in quasi-one dimensional flows in axisymmetric nozzles is considered before applying CFD solutions. Though the theory is restricted to one-dimensional cases, three-dimensional CFD examples are also given. Lastly, nozzle flows with normal shocks are presented using turbulence models. Worked examples and exercises are given in each chapter. Fluids transport thermal energy for its conversion to kinetic energy, thus playing a major role that is central to all heat engines. With the advent of rotating machinery in the 20th century, Fluid Engineering was developed in the form of hydraulics and hydrodynamics and adapted in engineering Schools across the world until recent times. With the High Performance Computing (HPC) in recent years, Simulation Based Engineering Science (SBES) has gradually replaced the conventional approach in Fluid Flow Design bringing Science directly into Engineering without approximations. Hence this SpringerBrief in Applied Sciences and Technology. This book brings SBES to an entry level allowing young students to quickly adapt to modern design practices. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Computational fluid dynamics. 
650 0 |a Fluid dynamics  |x Mathematical models. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Printed edition:  |z 9783319463810 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-319-46382-7  |y Plný text 
992 |c NTK-SpringerENG 
999 |c 99786  |d 99786 
993 |x NEPOSILAT  |y EIZ