Advances in neuromorphic hardware exploiting emerging nanoscale devices

This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up)...

Full description

Saved in:
Bibliographic Details
Other Authors: Suri, Manan.
Format: eBook
Language: English
Published: New Delhi : Springer, 2017.
Series: Cognitive systems monographs ; v. 31.
Subjects:
ISBN: 9788132237037
9788132237013
Physical Description: 1 online resource (216 pages)

Cover

Table of contents

LEADER 06312cam a2200505Mi 4500
001 99755
003 CZ-ZlUTB
005 20240914112207.0
006 m o d
007 cr un|---aucuu
008 170128s2017 ii o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d N$T  |d YDX  |d GW5XE  |d IDEBK  |d OCLCQ  |d NJR  |d N$T  |d OCLCF  |d UPM  |d VT2  |d UWO  |d JBG  |d IAD  |d ICW  |d ICN  |d OCLCQ  |d UAB  |d IOG  |d U3W  |d CAUOI  |d OCLCQ  |d KSU  |d EZ9  |d AU@  |d ESU  |d OCLCQ  |d WYU  |d LVT  |d AUD  |d UKAHL  |d OCLCQ  |d ERF  |d ADU  |d UKBTH  |d LEATE  |d LQU  |d OCLCQ 
020 |a 9788132237037  |q (electronic bk.) 
020 |z 9788132237013 
024 7 |a 10.1007/978-81-322-3703-7  |2 doi 
024 8 |a 10.1007/978-81-322-3 
035 |a (OCoLC)970631429  |z (OCoLC)970041834  |z (OCoLC)970611509  |z (OCoLC)970799061  |z (OCoLC)974649620  |z (OCoLC)981101409  |z (OCoLC)981820785  |z (OCoLC)1005832465  |z (OCoLC)1012053999  |z (OCoLC)1048149638  |z (OCoLC)1058196364  |z (OCoLC)1066495512  |z (OCoLC)1086463757  |z (OCoLC)1112599683  |z (OCoLC)1113436151  |z (OCoLC)1113595231  |z (OCoLC)1117170606  |z (OCoLC)1122848085  |z (OCoLC)1136517431 
245 0 0 |a Advances in neuromorphic hardware exploiting emerging nanoscale devices /  |c Manan Suri, editor. 
260 |a New Delhi :  |b Springer,  |c 2017. 
300 |a 1 online resource (216 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a Cognitive Systems Monographs ;  |v v. 31 
505 0 |a Preface; Contents; Dr. Manan Suri; Hardware Spiking Artificial Neurons, Their Response Function, and Noises; 1 Introduction; 1.1 Biological Neurons; 1.2 Neuronal Response Function; 1.3 Neuronal Noises; 1.4 Artificial Neuron Models; 2 Hardware Spiking Neurons; 2.1 Silicon Neurons; 2.2 Emerging Spiking Neurons; 3 Summary and Outlook; References; Synaptic Plasticity with Memristive Nanodevices; 1 Introduction; 2 Neuromorphic Systems: Basic Processing and Data Representation; 2.1 Data Encoding in Neuromorphic Systems; 2.2 Spike Computing for Neuromorphic Systems. 
505 8 |a 3 Synaptic Plasticity for Information Computing3.1 Causal Approach: Synaptic Learning Versus Synaptic Adaptation; 3.2 Phenomenological Approach: Short-Term Plasticity Versus Long-Term Plasticity; 4 Synaptic Plasticity Implementation in Neuromorphic Nanodevices; 4.1 Causal Implementation of Synaptic Plasticity; 4.2 Phenomenological Implementation of Synaptic Plasticity; 5 Conclusions; References; Neuromemristive Systems: A Circuit Design Perspective; 1 Introduction: Taking a Cue from Nature; 2 Memristor Overview; 3 Voltage Versus Current-Mode Circuit Designs for NMSs. 
505 8 |a 4 Neuron Circuits: Primary Information Processing Units4.1 Input Stage; 4.2 Activation Function; 5 Synapse Circuits: Communication and Memory; 6 Plasticity Circuits: Adaptation/Learning; 7 Summary and Outlook; References; Memristor-Based Platforms: A Comparison Between Continous-Time and Discrete-Time Cellular Neural Networks; 1 Introduction; 2 Backgorund; 3 New Memristance Restoring Circuit; 4 Simulation Results; 5 Cellular Automata and DTCNNs; 6 Belief Propagation Inspired Algorithm and Cellular Automaton Equivalence for RGB Image Processing; 7 Element Detection in RGB Image; 8 Conclusions. 
504 |a ReferencesReinterpretation of Magnetic Tunnel Junctions as Stochastic Memristive Devices; 1 Introduction; 2 Magnetic Tunnel Junction Basics; 2.1 Basic Structure of Magnetic Tunnel Junctions; 2.2 Integration and Scaling Potential of STT-MTJs; 2.3 Physical Modeling of Magnetization Dynamics; 2.4 Models About the Statistics of MTJs Switching Delay; 3 MTJs as Stochastic Synapses; 3.1 Example of a Feed-Forward Spiking Neural Network Using MTJ-based Synapses; 3.2 Impact of the Device Properties on the System Operation; 4 Conclusion; References. 
505 8 |a Multiple Binary OxRAMs as Synapses for Convolutional Neural Networks1 Multiple Binary OxRAM Devices as Artificial Synapses; 2 Convolutional Neural Network Architecture; 3 Synaptic Weight Resolution and Tolerance to Variability; 4 Conclusions; References; Nonvolatile Memory Crossbar Arrays for Non-von Neumann Computing; 1 Introduction; 2 Considerations for a Crossbar Implementation; 3 Phase-Change Memory (PCM): Results; 3.1 Experimental Results; 4 Non-filamentary RRAM Results; 4.1 Fabrication of PCMO Devices; 4.2 Simulation Results; 5 Discussion; 6 Conclusions; References. 
500 |a Novel Biomimetic Si Devices for Neuromorphic Computing Architecture. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Neural networks (Computer science) 
650 0 |a Computer architecture. 
650 0 |a Analog CMOS integrated circuits. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Suri, Manan. 
776 0 8 |i Print version:  |a Suri, Manan.  |t Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices.  |d New Delhi : Springer India, ©2017  |z 9788132237013 
830 0 |a Cognitive systems monographs ;  |v v. 31. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-81-322-3703-7  |y Plný text 
992 |c NTK-SpringerENG 
999 |c 99755  |d 99755 
993 |x NEPOSILAT  |y EIZ