Capacitively-coupled chopper amplifiers

This book describes the concept and design of the capacitively-coupled chopper technique, which can be used in precision analog amplifiers. Readers will learn to design power-efficient amplifiers employing this technique, which can be powered by regular low supply voltage such as 2V and possibly hav...

Full description

Saved in:
Bibliographic Details
Main Author Fan, Qinwen
Other Authors Makinwa, Kofi A. A., Huijsing, Johan H., 1938-
Format Electronic eBook
LanguageEnglish
Published Cham, Switzerland : Springer, 2016.
SeriesAnalog circuits and signal processing series.
Subjects
Online AccessFull text
ISBN9783319473918
9783319473901
ISSN1872-082X
Physical Description1 online resource

Cover

Table of Contents:
  • 1 Introduction; 1.1 Problem; 1.2 Traditional Solutions; 1.3 A Promising Solution: Capacitively Coupled Chopper Amplifier; 1.4 Challenging Issues; 1.5 Organization; References; 2 The Chopping Technique; 2.1 Basic Working Principle; 2.2 Basic Chopper Amplifier Topologies; 2.2.1 Basic Chopper Opamp and Instrumentation Amplifier Topologies; 2.2.2 Chopper Stabilization; 2.3 Ripple-Reduction Techniques; 2.3.1 The Switched-capacitor (SC) Notch Filter; 2.3.2 AC-Coupled Ripple-Reduction Loop; 2.3.3 Auto-Correction Feedback Loop; 2.3.4 Digitally Assisted Trimming.
  • 2.3.5 Chopping + Auto-Zeroing2.3.5.1 The Auto-Zeroing Principle; 2.3.5.2 Chopping + Auto-Zeroing; 2.3.5.3 Summary; 2.4 Chopping Non-idealities; 2.5 Chopping Pros and Cons; 2.6 Conclusions; References; 3 Capacitively Coupled Chopper Amplifiers; 3.1 Capacitively Coupled Chopper Opamps (CCOPA); 3.1.1 Offset and 1/f Noise; 3.1.2 Noise and Power Efficiency; 3.1.3 Common-mode Rejection Ratio (CMRR) and Common-mode Voltage Range (CMVR); 3.1.4 Input Impedance; 3.1.5 Settling and Transient Issues; 3.2 Capacitively Coupled Chopper IAs (CCIA); 3.2.1 Offset and 1/f Noise; 3.2.2 Noise and Power Efficiency.
  • 3.2.3 CMRR and CMVR3.2.4 Gain Accuracy; 3.2.5 Input Impedance; 3.2.6 Output Spikes; 3.2.7 Settling and Transient Issues; 3.3 Conclusions; References; 4 Choppers for High Input Common-Mode Voltages; 4.1 Choice of Transistors; 4.2 High-voltage (HV) Chopper Topologies; 4.2.1 HV Chopper with HV Amplifier Level-Shifter; 4.2.2 Capacitively Coupled HV Choppers; 4.3 Transient Protection; 4.4 Conclusions; References; 5 Capacitively-Coupled Chopper Operational Amplifiers; 5.1 Introduction; 5.2 Conventional Techniques to Expand the CMVR.
  • 5.3 The Single-Path Capacitively-coupled Operational Amplifier (CCOPA)5.3.1 Design of the Single-Path CCOPA; 5.3.1.1 Frequency Compensation of the CCOPA; 5.3.1.2 Input Chopper; 5.3.1.3 Switched-Capacitor Ripple-Reduction Loop (SC RRL); 5.3.2 Implementation of the Basic CCOPA; 5.3.2.1 Global Parameters (fchop and Cin1,2); 5.3.2.2 Implementation of the Input Chopper; 5.3.2.3 Implementation of the Gain Stages (Gm1, Gm2, and Gm3); 5.3.2.4 Implementation of the Input CM Biasing Resistors; 5.3.2.5 Implementation of the SC RRL; 5.3.3 Experimental Results; 5.4 Multipath CCOPA.
  • 5.4.1 Design of the Multipath CCOPA (MCCOPA)5.4.1.1 Frequency Compensation; 5.4.1.2 Noise Considerations; 5.4.1.3 Offset Considerations; 5.4.2 Implementation of the Multipath CCOPA; 5.4.2.1 Frequency Compensation; 5.4.2.2 Implementation of the HFP; 5.4.2.3 Implementation of the LFP; 5.4.3 Experimental Results of the MCCOPA; 5.5 Conclusions; References; 6 Capacitively Coupled Chopper Instrumentation Amplifiers for High-Side Current Sensing; 6.1 Introduction; 6.2 Overview of the State of the Art; 6.2.1 HV Chopper-Stabilized Current Feedback Instrumentation Amplifier.