Simulation Based Engineering in Solid Mechanics

This book begins with a brief historical perspective of the advent of rotating machinery in 20th century Solid Mechanics and the development of the discipline of the Strength of Materials. High Performance Computing (HPC) and Simulation Based Engineering Science (SBES) have gradually replaced the co...

Full description

Saved in:
Bibliographic Details
Main Author Rao, J. S.
Format Electronic eBook
LanguageEnglish
Published Cham, Switzerland : Springer, 2016.
Subjects
Online AccessFull text
ISBN9783319476148
9783319476131
Physical Description1 online resource (xiv, 200 pages)

Cover

LEADER 00000cam a2200000Mi 4500
001 99536
003 CZ-ZlUTB
005 20251008111953.0
006 m o d
007 cr |||||||||||
008 161109t20162017sz o 001 0 eng d
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d N$T  |d YDX  |d EBLCP  |d GW5XE  |d N$T  |d CCO  |d OCLCF  |d IDB  |d MERUC  |d UAB  |d COO  |d IOG  |d ESU  |d JBG  |d IAD  |d ICW  |d ICN  |d OTZ  |d IDEBK  |d OCLCQ  |d U3W  |d CAUOI  |d OCLCQ  |d KSU  |d EZ9  |d OCLCQ  |d UKMGB  |d UKAHL  |d OCLCQ  |d VLB  |d AU@ 
020 |a 9783319476148  |q (electronic bk.) 
020 |z 9783319476131 
024 7 |a 10.1007/978-3-319-47614-8  |2 doi 
035 |a (OCoLC)962412996  |z (OCoLC)962303227  |z (OCoLC)962323969  |z (OCoLC)965519209  |z (OCoLC)967189308  |z (OCoLC)1097083939 
100 1 |a Rao, J. S. 
245 1 0 |a Simulation Based Engineering in Solid Mechanics /  |c J.S. Rao. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2016. 
264 4 |c ©2017 
300 |a 1 online resource (xiv, 200 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
500 |a Includes index. 
505 0 |a Preface.- Introduction.- 1.1 Matrices.- 1.2 Vectors and Tensors.- 1.3 Energy Principle.- 2 Continuous Solid.- 2.1 External and Internal Tractions.- 2.2. Stress Definition.- 2.3. Equilibrium Relations.- 2.4. Strain.- 2.5. Stress -- Strain Relations.- 2.6 Strain Energy and Work.- 2.7 Von Mises Stress.- 3 Euler-Lagrange Equations.- 3.1 General Approach for solving Structural Problems.- 3.2 Other Applications of Euler-Lagrange Equation leading to Optimization.- 3.3 Derivation of Euler-Lagrange Equation through Delta Operator.- 4 Axially Loaded 1-D Structures.- 4.1 Simply Supported Bar.- 4.2 Simply Supported -- Free Bar.- 4.3 Finite Element Method.- 4.4 Thermal Stresses.- 4.5 Principle of Virtual Work.- 4.6 Minimization of Total Potential Energy.- 5 Twisting of a Rod.- 5.1 Finite Element Method for Torsion.- 5.2 Two Elements and Stiffness Matrix Assembly.- 5.3 Ritz Method for Torsion.- 6 Bending of a Beam.- 6.1 Bending by Energy Method.- 6.2 Beam with Axial Load (Beam-Column).- 6.3 Strength of Materials Approach.- 6.4 Beam Solution by Energy Method.- 6.5 Beam Finite Element.- 6.6 Buckling revisited.- 6.7 Galerkin Method for Tapered Beams.- 6.8 General Structures by Commercial Solvers.- 7. Epilogue.- Acknowledgements.- Index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book begins with a brief historical perspective of the advent of rotating machinery in 20th century Solid Mechanics and the development of the discipline of the Strength of Materials. High Performance Computing (HPC) and Simulation Based Engineering Science (SBES) have gradually replaced the conventional approach in Design bringing science directly into engineering without approximations. A recap of the required mathematical principles is given. The science of deformation, strain and stress at a point under the application of external traction loads is next presented. Only one-dimensional structures classified as Bars (axial loads), Rods (twisting loads) and Beams (bending loads) are considered in this book. The principal stresses and strains and von Mises stress and strain that used in design of structures are next presented. Lagrangian solution was used to derive the governing differential equations consistent with assumed deformation field and solution for deformations, strains and stresses were obtained. The finite element method most suitable for HPC is derived and the corresponding stiffness matrix for the element is derived. Assembling procedure of these matrices is then described to obtain the system matrices. Worked examples and exercises are given in each chapter. This book brings SBES at entry level allowing young students to quickly adapt to modern design practices. . 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Mechanics. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Rao, J.S.  |t Simulation Based Engineering in Solid Mechanics.  |d Cham, Switzerland : Springer, 2016  |z 3319476130  |z 9783319476131  |w (OCoLC)958355846 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-319-47614-8 
992 |c NTK-SpringerENG 
999 |c 99536  |d 99536 
993 |x NEPOSILAT  |y EIZ