Advanced geometrical optics
Saved in:
| Main Author | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Singapore :
Springer,
[2016]
|
| Series | Progress in optical science and photonics ;
v. 4. |
| Subjects | |
| Online Access | Full text |
| ISBN | 9789811022999 9789811022982 |
| ISSN | 2363-5096 ; |
| Physical Description | 1 online resource (xxiv, 460 pages) : illustrations (some color) |
Cover
| LEADER | 00000cam a2200000Ii 4500 | ||
|---|---|---|---|
| 001 | 99493 | ||
| 003 | CZ-ZlUTB | ||
| 005 | 20251008111952.0 | ||
| 006 | m o d | ||
| 007 | cr cnu---unuuu | ||
| 008 | 161027t20162017si a ob 000 0 eng d | ||
| 040 | |a GW5XE |b eng |e rda |e pn |c GW5XE |d YDX |d EBLCP |d OCLCF |d IDEBK |d N$T |d UAB |d IOG |d MERER |d ESU |d Z5A |d OCLCQ |d JBG |d IAD |d ICW |d ICN |d OTZ |d OCLCQ |d U3W |d CAUOI |d KSU |d AUD |d OCLCQ |d UKAHL | ||
| 020 | |a 9789811022999 |q (electronic bk.) | ||
| 020 | |z 9789811022982 |q (print) | ||
| 024 | 7 | |a 10.1007/978-981-10-2299-9 |2 doi | |
| 035 | |a (OCoLC)961256755 |z (OCoLC)961206487 | ||
| 100 | 1 | |a Lin, P. D. |q (Psang Dain), |e author. | |
| 245 | 1 | 0 | |a Advanced geometrical optics / |c Psang Dain Lin. |
| 264 | 1 | |a Singapore : |b Springer, |c [2016] | |
| 264 | 4 | |c ©2017 | |
| 300 | |a 1 online resource (xxiv, 460 pages) : |b illustrations (some color) | ||
| 336 | |a text |b txt |2 rdacontent | ||
| 337 | |a počítač |b c |2 rdamedia | ||
| 338 | |a online zdroj |b cr |2 rdacarrier | ||
| 490 | 1 | |a Progress in optical science and photonics, |x 2363-5096 ; |v volume 4 | |
| 504 | |a Includes bibliographical references. | ||
| 505 | 0 | |a Preface; Acknowledgements; Contents; A New Light on Old Geometrical Optics (Raytracing Equations of Geometrical Optics); 1 Mathematical Background; 1.1 Foundational Mathematical Tools and Units; 1.2 Vector Notation; 1.3 Coordinate Transformation Matrix; 1.4 Basic Translation and Rotation Matrices; 1.5 Specification of a Pose Matrix by Using Translation and Rotation Matrices; 1.6 Inverse Matrix of a Transformation Matrix; 1.7 Flat Boundary Surface; 1.8 RPY Transformation Solutions; 1.9 Equivalent Angle and Axis of Rotation; 1.10 The First- and Second-Order Partial Derivatives of a Vector. | |
| 505 | 8 | |a 1.11 Introduction to Optimization MethodsReferences; 2 Skew-Ray Tracing of Geometrical Optics; 2.1 Source Ray; 2.2 Spherical Boundary Surfaces; 2.2.1 Spherical Boundary Surface and Associated Unit Normal Vector; 2.2.2 Incidence Point; 2.2.3 Unit Directional Vectors of Reflected and Refracted Rays; 2.3 Flat Boundary Surfaces; 2.3.1 Flat Boundary Surface and Associated Unit Normal Vector; 2.3.2 Incidence Point; 2.3.3 Unit Directional Vectors of Reflected and Refracted Rays; 2.4 General Aspherical Boundary Surfaces; 2.4.1 Aspherical Boundary Surface and Associated Unit Normal Vector. | |
| 505 | 8 | |a 2.4.2 Incidence Point2.5 The Unit Normal Vector of a Boundary Surface for Given Incoming and Outgoing Rays; 2.5.1 Unit Normal Vector of Refractive Boundary Surface; 2.5.2 Unit Normal Vector of Reflective Boundary Surface; References; 3 Geometrical Optical Model; 3.1 Axis-Symmetrical Systems; 3.1.1 Elements with Spherical Boundary Surfaces; 3.1.2 Elements with Spherical and Flat Boundary Surfaces; 3.1.3 Elements with Flat and Spherical Boundary Surfaces; 3.1.4 Elements with Flat Boundary Surfaces; 3.2 Non-axially Symmetrical Systems; 3.3 Spot Diagram of Monochromatic Light. | |
| 505 | 8 | |a 3.4 Point Spread Function3.5 Modulation Transfer Function; 3.6 Motion Measurement Systems; References; 4 Raytracing Equations for Paraxial Optics; 4.1 Raytracing Equations of Paraxial Optics for 3-D Optical Systems; 4.1.1 Transfer Matrix; 4.1.2 Reflection and Refraction Matrices for Flat Boundary Surface; 4.1.3 Reflection and Refraction Matrices for Spherical Boundary Surface; 4.2 Conventional 2€×€2 Raytracing Matrices for Paraxial Optics; 4.2.1 Refracting Boundary Surfaces; 4.2.2 Reflecting Boundary Surfaces. | |
| 505 | 8 | |a 4.3 Conventional Raytracing Matrices for Paraxial Optics Derived from Geometry Relations4.3.1 Transfer Matrix for Ray Propagating Along Straight-Line Path; 4.3.2 Refraction Matrix at Refractive Flat Boundary Surface; 4.3.3 Reflection Matrix at Flat Mirror; 4.3.4 Refraction Matrix at Refractive Spherical Boundary Surface; 4.3.5 Reflection Matrix at Spherical Mirror; References; 5 Cardinal Points and Image Equations; 5.1 Paraxial Optics; 5.2 Cardinal Planes and Cardinal Points; 5.2.1 Location of Focal Points; 5.2.2 Location of Nodal Points; 5.3 Thick and Thin Lenses; 5.4 Curved Mirrors. | |
| 506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
| 590 | |a SpringerLink |b Springer Complete eBooks | ||
| 650 | 0 | |a Geometrical optics. | |
| 655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
| 655 | 9 | |a electronic books |2 eczenas | |
| 830 | 0 | |a Progress in optical science and photonics ; |v v. 4. |x 2363-5096 | |
| 856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-981-10-2299-9 |
| 992 | |c NTK-SpringerENG | ||
| 999 | |c 99493 |d 99493 | ||
| 993 | |x NEPOSILAT |y EIZ | ||