Boundary-layer theory

This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition feature...

Full description

Saved in:
Bibliographic Details
Main Authors Schlichting, Hermann, 1907-1982 (Author), Gersten, K. (Author)
Other Authors Mayes, Katherine (Translator)
Format Electronic eBook
LanguageEnglish
Published Berlin : Springer, [2016]
EditionNinth edition.
Subjects
Online AccessFull text
ISBN9783662529195
9783662529171
Physical Description1 online resource (xxviii, 805 pages) : illustrations

Cover

Table of Contents:
  • Machine generated contents note: pt. I Fundamentals of Viscous Flows
  • 1. Some Features of Viscous Flows
  • 1.1. Real and Ideal Fluids
  • 1.2. Viscosity
  • 1.3. Reynolds Number
  • 1.4. Laminar and Turbulent Flows
  • 1.5. Asymptotic Behaviour at Large Reynolds Numbers
  • 1.6. Comparison of Measurements Using the Inviscid Limiting Solution
  • 1.7. Summary
  • 2. Fundamentals of Boundary
  • Layer Theory
  • 2.1. Boundary
  • Layer Concept
  • 2.2. Laminar Boundary Layer on a Flat Plate at Zero Incidence
  • 2.3. Turbulent Boundary Layer on a Flat Plate at Zero Incidence
  • 2.4. Fully Developed Turbulent Flow in a Pipe
  • 2.5. Boundary Layer on an Airfoil
  • 2.6. Separation of the Boundary Layer
  • 2.7. Overview of the Following Material
  • 3. Field Equations for Flows of Newtonian Fluids
  • 3.1. Description of Flow Fields
  • 3.2. Continuity Equation
  • 3.3. Momentum Equation
  • 3.4. General Stress State of Deformable Bodies
  • 3.5. General State of Deformation of Flowing Fluids
  • 3.6. Relation Between Stresses and Rate of Deformation
  • 3.7. Stokes Hypothesis
  • 3.8. Bulk Viscosity and Thermodynamic Pressure
  • 3.9. Navier
  • Stokes Equations
  • 3.10. Energy Equation
  • 3.11. Equations of Motion for Arbitrary Coordinate Systems (Summary)
  • 3.12. Equations of Motion for Cartesian Coordinates in Index Notation
  • 3.13. Equations of Motion in Different Coordinate Systems
  • 4. General Properties of the Equations of Motion
  • 4.1. Similarity Laws
  • 4.2. Similarity Laws for Flow with Buoyancy Forces (Mixed Forced and Natural Convection)
  • 4.3. Similarity Laws for Natural Convection
  • 4.4. Vorticity Transport Equation
  • 4.5. Limit of Very Small Reynolds Numbers
  • 4.6. Limit of Very Large Reynolds Numbers
  • 4.7. Mathematical Example of the Limit Re [→] [∞]
  • 4.8. Non
  • Uniqueness of Solutions of the Navier
  • Stokes Equations
  • 5. Exact Solutions of the Navier
  • Stokes Equations
  • 5.1. Steady Plane Flows
  • 5.1.1. Couette
  • Poiseuille Flows
  • 5.1.2. Jeffery
  • Hamel Flows (Fully Developed Nozzle and Diffuser Flows)
  • 5.1.3. Plane Stagnation
  • Point Flow
  • 5.1.4. Flow Past a Parabolic Body
  • 5.1.5. Flow Past a Circular Cylinder
  • 5.2. Steady Axisymmetric Flows
  • 5.2.1. Circular Pipe Flow (Hagen
  • Poiseuille Flow)
  • 5.2.2. Flow Between Two Concentric Rotating Cylinders
  • 5.2.3. Axisymmetric Stagnation
  • Point Flow
  • 5.2.4. Flow at a Rotating Disk
  • 5.2.5. Axisymmetric Free Jet
  • 5.3. Unsteady Plane Flows
  • 5.3.1. Flow at a Wall Suddenly Set into Motion (First Stokes Problem)
  • 5.3.2. Flow at an Oscillating Wall (Second Stokes Problem)
  • 5.3.3. Start
  • up of Couette Flow
  • 5.3.4. Unsteady Asymptotic Suction
  • 5.3.5. Unsteady Plane Stagnation
  • Point Flow
  • 5.3.6. Oscillating Channel Flow
  • 5.4. Unsteady Axisymmetric Flows
  • 5.4.1. Vortex Decay
  • 5.4.2. Unsteady Pipe Flow
  • 5.5. Summary
  • pt. II Laminar Boundary Layers
  • 6. Boundary
  • Layer Equations in Plane Flow; Plate Boundary Layer
  • 6.1. Setting up the Boundary
  • Layer Equations
  • 6.2. Wall Friction, Separation and Displacement
  • 6.3. Dimensional Representation of the Boundary
  • Layer Equations
  • 6.4. Friction Drag
  • 6.5. Plate Boundary Layer
  • 7. General Properties and Exact Solutions of the Boundary
  • Layer Equations for Plane Flows
  • 7.1. Compatibility Condition at the Wall
  • 7.2. Similar Solutions of the Boundary
  • Layer Equations
  • 7.2.1. Derivation of the Ordinary Differential Equation
  • A. Boundary Layers with Outer Flow
  • B. Boundary Layers Without Outer Flow
  • 7.2.2. Wedge Flows
  • 7.2.3. Flow in a Convergent Channel
  • 7.2.4. Mixing Layer
  • 7.2.5. Moving Plate
  • 7.2.6. Free Jet
  • 7.2.7. Wall Jet
  • 7.3. Coordinate Transformation
  • 7.3.1. Gortler Transformation
  • 7.3.2. v.
  • Mises Transformation
  • 7.3.3. Crocco Transformation
  • 7.4. Series Expansion of the Solutions
  • 7.4.1. Blasius Series
  • 7.4.2. Gortler Series
  • 7.5. Asymptotic Behaviour of Solutions Downstream
  • 7.5.1. Wake Behind Bodies
  • 7.5.2. Boundary Layer at a Moving Wall
  • 7.6. Integral Relations of the Boundary Layer
  • 7.6.1. Momentum
  • Integral Equation
  • 7.6.2. Energy
  • Integral Equation
  • 7.6.3. Moment
  • of
  • Momentum Integral Equations
  • 8. Approximate Methods for Solving the Boundary
  • Layer Equations for Steady Plane Flows
  • 8.1. Integral Methods
  • 8.2. Stratford's Separation Criterion
  • 8.3. Comparison of the Approximate Solutions with Exact Solutions
  • 8.3.1. Retarded Stagnation
  • Point Flow
  • 8.3.2. Divergent Channel (Diffuser)
  • 8.3.3. Circular Cylinder Flow
  • 8.3.4. Symmetric Flow past a Joukowsky Airfoil
  • 9. Thermal Boundary Layers without Coupling of the Velocity Field to the Temperature Field
  • 9.1. Boundary
  • Layer Equations for the Temperature Field
  • 9.2. Forced Convection for Constant Properties
  • 9.3. Effect of the Prandtl Number
  • 9.4. Similar Solutions of the Thermal Boundary Layer
  • 9.5. Integral Methods for Computing the Heat Transfer
  • 9.6. Effect of Dissipation; Distribution of the Adiabatic Wall Temperature
  • 10. Thermal Boundary Layers with Coupling of the Velocity Field to the Temperature Field
  • 10.1. Remark
  • 10.2. Boundary
  • Layer Equations
  • 10.3. Boundary Layers with Moderate Wall Heat Transfer (Without Gravitational Effects)
  • 10.3.1. Perturbation Calculation
  • 10.3.2. Property Ratio Method (Temperature Ratio Method)
  • 10.3.3. Reference Temperature Method
  • 10.4. Compressible Boundary Layers (Without Gravitational Effects)
  • 10.4.1. Physical Property Relations
  • 10.4.2. Simple Solutions of the Energy Equation
  • 10.4.3. Transformations of the Boundary
  • Layer Equations
  • 10.4.4. Similar Solutions
  • 10.4.5. Integral Methods
  • 10.4.6. Boundary Layers in Hypersonic Flows
  • 10.5. Natural Convection
  • 10.5.1. Boundary
  • Layer Equations
  • 10.5.2. Transformation of the Boundary
  • Layer Equations
  • 10.5.3. Limit of Large Prandtl Numbers (Tw = const)
  • 10.5.4. Similar Solutions
  • 10.5.5. General Solutions
  • 10.5.6. Variable Physical Properties
  • 10.5.7. Effect of Dissipation
  • 10.6. Indirect Natural Convection
  • 10.7. Mixed Convection
  • 11. Boundary
  • Layer Control (Suction/Blowing)
  • 11.1. Different Kinds of Boundary
  • Layer Control
  • 11.2. Continuous Suction and Blowing
  • 11.2.1. Fundamentals
  • 11.2.2. Massive Suction
  • 11.2.3. Massive Blowing
  • 11.2.4. Similar Solutions
  • 11.2.5. General Solutions
  • 1. Plate Flow with Uniform Suction or Blowing
  • 2. Airfoil
  • 11.2.6. Natural Convection with Blowing and Suction
  • 11.3. Binary Boundary Layers
  • 11.3.1. Overview
  • 11.3.2. Basic Equations
  • 11.3.3. Analogy Between Heat and Mass Transfer
  • 11.3.4. Similar Solutions
  • 12. Axisymmetric and Three
  • Dimensional Boundary Layers
  • 12.1. Axisymmetric Boundary Layers
  • 12.1.1. Boundary
  • Layer Equations
  • 12.1.2. Mangier Transformation
  • 12.1.3. Boundary Layers on Non
  • Rotating Bodies of Revolution
  • 12.1.4. Boundary Layers on Rotating Bodies of Revolution
  • 12.1.5. Free Jets and Wakes
  • 12.2. Three
  • Dimensional Boundary Layers
  • 12.2.1. Boundary
  • Layer Equations
  • 12.2.2. Boundary Layer at a Cylinder
  • 12.2.3. Boundary Layer at a Yawing Cylinder
  • 12.2.4. Three
  • Dimensional Stagnation Point
  • 12.2.5. Boundary Layers in Symmetry Planes
  • 12.2.6. General Configurations
  • 13. Unsteady Boundary Layers
  • 13.1. Fundamentals
  • 13.1.1. Remark
  • 13.1.2. Boundary
  • Layer Equations
  • 13.1.3. Similar and Semi
  • Similar Solutions
  • 13.1.4. Solutions for Small Times (High Frequencies)
  • 13.1.5. Separation of Unsteady Boundary Layers
  • 13.1.6. Integral Relations and Integral Methods
  • 13.2. Unsteady Motion of Bodies in a Fluid at Rest
  • 13.2.1. Start
  • Up Processes
  • 13.2.2. Oscillation of Bodies in a Fluid at Rest
  • 13.3. Unsteady Boundary Layers in a Steady Basic Flow
  • 13.3.1. Periodic Outer Flow
  • 13.3.2. Steady Flow with a Weak Periodic Perturbation
  • 13.3.3. Transition Between Two Slightly Different Steady Boundary Layers
  • 13.4. Compressible Unsteady Boundary Layers
  • 13.4.1. Remark
  • 13.4.2. Boundary Layer Behind a Moving Normal Shock Wave
  • 13.4.3. Flat Plate at Zero Incidence with Variable Free Stream Velocity and Wall Temperature
  • 14. Extensions to the Prandtl Boundary
  • Layer Theory
  • 14.1. Remark
  • 14.2. Higher Order Boundary
  • Layer Theory
  • 14.3. Hypersonic Interaction
  • 14.4. Triple
  • Deck Theory
  • 14.5. Marginal Separation
  • 14.6. Massive Separation
  • pt. III Laminar
  • Turbulent Transition
  • 15. Onset of Turbulence (Stability Theory)
  • 15.1. Some Experimental Results on the Laminar
  • Turbulent Transition
  • 15.1.1. Transition in the Pipe Flow
  • 15.1.2. Transition in the Boundary Layer
  • 15.2. Fundamentals of Stability Theory
  • 15.2.1. Remark
  • 15.2.2. Fundamentals of Primary Stability Theory
  • 15.2.3. Orr
  • Sommerfeld Equation
  • 15.2.4. Curve of Neutral Stability and the Indifference Reynolds Number
  • a. Plate Boundary Layer
  • b. Effect of Pressure Gradient
  • c. Effect of Suction
  • d. Effect of Wall Heat Transfer
  • e. Effect of Compressibility
  • f. Effect of Wall Roughness
  • g. Further Effects
  • 15.3. Instability of the Boundary Layer for Three
  • Dimensional Perturbations
  • 15.3.1. Remark
  • 15.3.2. Fundamentals of Secondary Stability Theory
  • 15.3.3. Boundary Layers at Curved Walls
  • 15.3.4. Boundary Layer at a Rotating Disk
  • 15.3.5. Three
  • Dimensional Boundary Layers.
  • Note continued: 15.4. Local Perturbations
  • pt. IV Turbulent Boundary Layers
  • 16. Fundamentals of Turbulent Flows
  • 16.1. Remark
  • 16.2. Mean Motion and Fluctuations
  • 16.3. Basic Equations for the Mean Motion of Turbulent Flows
  • 16.3.1. Continuity Equation
  • 16.3.2. Momentum Equations (Reynolds Equations)
  • 16.3.3. Equation for the Kinetic Energy of the Turbulent Fluctuations (k-Equation)
  • 16.3.4. Thermal Energy Equation
  • 16.4. Closure Problem
  • 16.5. Description of the Turbulent Fluctuations
  • 16.5.1. Correlations
  • 16.5.2. Spectra and Eddies
  • 16.5.3. Turbulence of the Outer Flow
  • 16.5.4. Edges of Turbulent Regions and Intermittence
  • 16.6. Boundary
  • Layer Equations for Plane Flows
  • 17. Internal Flows
  • 17.1. Couette Flow
  • 17.1.1. Two
  • Layer Structure of the Velocity Field and the Logarithmic Overlap Law
  • 17.1.2. Universal Laws of the Wall
  • 17.1.3. Friction Law
  • 17.1.4. Turbulence Models
  • 17.1.5. Heat Transfer
  • 17.2. Fully Developed Internal Flows (A = const)
  • 17.2.1. Channel Flow
  • 17.2.2. Couette
  • Poiseuille Flows
  • 17.2.3. Pipe Flow
  • 17.3. Slender
  • Channel Theory
  • 18. Turbulent Boundary Layers without Coupling of the Velocity Field to the Temperature Field
  • 18.1. Turbulence Models
  • 18.1.1. Remark
  • 18.1.2. Algebraic Turbulence Models
  • 18.1.3. Turbulent Energy Equation
  • 18.1.4. Two
  • Equation Models
  • 18.1.5. Reynolds Stress Models
  • 18.1.6. Heat Transfer Models
  • 18.1.7. Low
  • Reynolds
  • Number Models
  • 18.1.8. Large
  • Eddy Simulation and Direct Numerical Simulation
  • 18.2. Attached Boundary Layers
  • 18.2.1. Layered Structure
  • 18.2.2. Boundary
  • Layer Equations Using the Defect Formulation
  • 18.2.3. Friction Law and Characterisitic Quantities of the Boundary Layer
  • 18.2.4. Equilibrium Boundary Layers
  • 18.2.5. Boundary Layer on a Plate at Zero Incidence
  • 18.3. Boundary Layers with Separation
  • 18.3.1. Stratford Flow
  • 18.3.2. Quasi
  • Equilibrium Boundary Layers
  • 18.4. Computation of Boundary Layers Using Integral Methods
  • 18.4.1. Direct Method
  • 18.4.2. Inverse Method
  • 18.5. Computation of Boundary Layers Using Field Methods
  • 18.5.1. Attached Boundary Layers
  • 18.5.2. Boundary Layers with Separation
  • 18.5.3. Low
  • Reynolds
  • Number Turbulence Models
  • 18.5.4. Additional Effects
  • 18.6. Computation of Thermal Boundary Layers
  • 18.6.1. Fundamentals
  • 18.6.2. Computation of Thermal Boundary Layers Using Field Methods
  • 19. Turbulent Boundary Layers with Coupling of the Velocity Field to the Temperature Field
  • 19.1. Fundamental Equations
  • 19.1.1. Time Averaging for Variable Density
  • 19.1.2. Boundary
  • Layer Equations
  • 19.2. Compressible Turbulent Boundary Layers
  • 19.2.1. Temperature Field
  • 19.2.2. Overlap Law
  • 19.2.3. Skin
  • Friction Coefficient and Nusselt Number
  • 19.2.4. Integral Methods for Adiabatic Walls
  • 19.2.5. Field Methods
  • 19.2.6. Shock
  • Boundary
  • Layer Interaction
  • 19.3. Natural Convection
  • 20. Axisymmetric and Three
  • Dimensional Turbulent Boundary Layers
  • 20.1. Axisymmetric Boundary Layers
  • 20.1.1. Boundary
  • Layer Equations
  • 20.1.2. Boundary Layers without Body Rotation
  • 20.1.3. Boundary Layers with Body Rotation
  • 20.2. Three
  • Dimensional Boundary Layers
  • 20.2.1. Boundary
  • Layer Equations
  • 20.2.2. Computation Methods
  • 20.2.3. Examples
  • 21. Unsteady Turbulent Boundary Layers
  • 21.1. Averaging and Boundary
  • Layer Equations
  • 21.2. Computation Methods
  • 21.3. Examples
  • 22. Turbulent Free Shear Flows
  • 22.1. Remark
  • 22.2. Equations for Plane Free Shear Layers
  • 22.3. Plane Free Jet
  • 22.3.1. Global Balances
  • 22.3.2. Far Field
  • 22.3.3. Near Field
  • 22.3.4. Wall Effects
  • 22.4. Mixing Layer
  • 22.5. Plane Wake
  • 22.6. Axisymmetric Free Shear Flows
  • 22.6.1. Basic Equations
  • 22.6.2. Free Jet
  • 22.6.3. Wake
  • 22.7. Buoyant Jets
  • 22.7.1. Plane Buoyant Jet
  • 22.7.2. Axisymmetric Buoyant Jet
  • 22.8. Plane Wall Jet
  • pt. V Numerical Methods in Boundary
  • Layer Theory
  • 23. Numerical Integration of the Boundary
  • Layer Equations
  • 23.1. Laminar Boundary Layers
  • 23.1.1. Remark
  • 23.1.2. Note on Boundary
  • Layer Transformations
  • 23.1.3. Explicit and Implicit Discretisation
  • 23.1.4. Solution of the Implicit Difference Equations
  • 23.1.5. Integration of the Continuity Equation
  • 23.1.6. Boundary
  • Layer Edge and Wall Shear Stress
  • 23.1.7. Integration of the Transformed Boundary
  • Layer Equations Using the Box Scheme
  • 23.2. Turbulent Boundary Layers
  • 23.2.1. Method of Wall Functions
  • 23.2.2. Low
  • Reynolds
  • Number Turbulence Models
  • 23.3. Unsteady Boundary Layers
  • 23.4. Steady Three
  • Dimensional Boundary Layers.