Recent advances in evolutionary multi-objective optimization

This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas con...

Full description

Saved in:
Bibliographic Details
Other Authors Bechikh, Slim (Editor), Datta, Rituparna (Editor), Gupta, Abhishek K. (Editor)
Format Electronic eBook
LanguageEnglish
Published Switzerland : Springer, [2016]
SeriesAdaptation, learning and optimization ; v. 20.
Subjects
Online AccessFull text
ISBN9783319429786
9783319429779
ISSN1867-4534 ;
Physical Description1 online resource (xii, 179 pages) : illustrations (some color)

Cover

LEADER 00000cam a2200000Ii 4500
001 99268
003 CZ-ZlUTB
005 20251008111945.0
006 m o d
007 cr cnu|||unuuu
008 160811t20162017sz a o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d OCLCQ  |d EBLCP  |d GW5XE  |d N$T  |d OCLCF  |d DEBBG  |d IDB  |d UAB  |d IOG  |d MERER  |d ESU  |d Z5A  |d OCLCQ  |d JBG  |d IAD  |d ICW  |d YDX  |d AZU  |d ICN  |d OTZ  |d OCLCQ  |d U3W  |d CAUOI  |d KSU  |d OCLCQ  |d AUD  |d UKAHL  |d OCLCQ 
020 |a 9783319429786  |q (electronic bk.) 
020 |z 9783319429779  |q (print) 
035 |a (OCoLC)956505383  |z (OCoLC)959031742 
245 0 0 |a Recent advances in evolutionary multi-objective optimization /  |c Slim Bechikh, Rituparna Datta, Abhishek Gupta, editors. 
264 1 |a Switzerland :  |b Springer,  |c [2016] 
264 4 |c ©2017 
300 |a 1 online resource (xii, 179 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a Adaptation, learning, and optimization,  |x 1867-4534 ;  |v volume 20 
505 0 |a Multi-objective Optimization: Classical and Evolutionary Approaches -- Dynamic Multi-objective Optimization using Evolutionary Algorithms: A Survey -- Evolutionary Bilevel Optimization: An Introduction and Recent Advances -- Many-objective Optimization using Evolutionary Algorithms: A Survey -- On the Emerging Notion of Evolutionary Multitasking: A Computational Analog of Cognitive Multitasking -- Practical Applications in Constrained Evolutionary Multi-objective Optimization. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include:<optimization in dynamic environments, multi-objective bilevel programming, handling high dimensionality under many objectives, and evolutionary multitasking. In addition to theory and methodology, this book describes several real-world applications from various domains, which will expose the readers to the versatility of evolutionary multi-objective optimization. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Mathematical optimization. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Bechikh, Slim,  |e editor. 
700 1 |a Datta, Rituparna,  |e editor. 
700 1 |a Gupta, Abhishek K.,  |e editor. 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe  |t Bechikh, Slim. Recent Advances in Evolutionary Multi-objective Optimization 
830 0 |a Adaptation, learning and optimization ;  |v v. 20. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-319-42978-6 
992 |c NTK-SpringerENG 
999 |c 99268  |d 99268 
993 |x NEPOSILAT  |y EIZ