E-learning systems : intelligent techniques for personalization

This monograph provides a comprehensive research review of intelligent techniques for personalisation of e-learning systems. Special emphasis is given to intelligent tutoring systems as a particular class of e-learning systems, which support and improve the learning and teaching of domain-specific k...

Full description

Saved in:
Bibliographic Details
Main Authors: Klašnja-Milićević, Aleksandra, (Author), Vesin, Boban, (Author), Ivanović, Mirjana, (Author), Budimac, Zoran, (Author), Jain, L. C., (Author)
Format: eBook
Language: English
Published: Switzerland : Springer, [2016]
Series: Intelligent systems reference library ; v. 112.
Subjects:
ISBN: 9783319411637
9783319411613
Physical Description: 1 online resource (xxiii, 294 pages) : illustrations (some color)

Cover

Table of contents

LEADER 05475cam a2200505Ii 4500
001 99227
003 CZ-ZlUTB
005 20240914111715.0
006 m o d
007 cr cnu|||unuuu
008 160725t20162017sz a ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d GW5XE  |d IDEBK  |d EBLCP  |d OCLCF  |d N$T  |d UAB  |d IOG  |d MERER  |d ESU  |d OCLCQ  |d JBG  |d IAD  |d ICW  |d ICN  |d OTZ  |d YDX  |d Z5A  |d OCLCQ  |d U3W  |d CAUOI  |d KSU  |d UKMGB  |d UKAHL  |d OCLCQ 
020 |a 9783319411637  |q (electronic bk.) 
020 |z 9783319411613  |q (print) 
035 |a (OCoLC)953969157  |z (OCoLC)962354248  |z (OCoLC)1163431310  |z (OCoLC)1193114397 
245 0 0 |a E-learning systems :  |b intelligent techniques for personalization /  |c Aleksandra Klašnja-Milićević, Boban Vesin, Mirjana Ivanović, Zoran Budimac, Lakhmi C. Jain. 
264 1 |a Switzerland :  |b Springer,  |c [2016] 
264 4 |c ©2017 
300 |a 1 online resource (xxiii, 294 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a Intelligent systems reference library,  |x 1868-4394 ;  |v volume 112 
504 |a Includes bibliographical references. 
505 0 |a Foreword; Preface; Contents; About the Authors; Abbreviations; Abstract; Preliminaries; 1 Introduction to E-Learning Systems; Abstract; 1.1 Web-Based Learning; 1.2 E-Learning; 1.3 E-Learning Objects, Standards and Specifications; 1.3.1 E-Learning Objects; 1.3.2 E-Learning Specifications and Standards; 1.3.2.1 S1. IEEE LOM and IMS Learning Resource Metadata; 1.3.2.2 S2. Dublin Core Metadata Initiative; 1.3.2.3 S3. IMS Learner Information Package; 1.3.2.4 S4. IMS Content Packaging; 1.3.2.5 S5. IMS Simple Sequencing; 1.3.2.6 S6. ADL SCORM; 1.3.3 Analysis of Standards and Specifications. 
505 8 |a 3.3.4 Information Understanding: Sequential and Global LearnersReferences; 4 Adaptation in E-Learning Environments; Abstract; 4.1 Adaptive Educational Hypermedia; 4.2 Content Adaptation; 4.3 Link Adaptation; References; 5 Agents in E-Learning Environments; Abstract; 5.1 Some Existing Agent Based Systems; 5.2 HAPA System Overview; 5.2.1 Harvesting and Classifying the Learning Material; 5.2.1.1 Pedagogical agents; References; 6 Recommender Systems in E-Learning Environments; Abstract; 6.1 Recommendations and Recommender Systems. 
505 8 |a 6.2 The Most Important Requirements and Challenges for Designing a Recommender System in E-Learning Environments6.3 Recommendation Techniques for RS in E-Learning Environments-A Survey of the State-of-the-Art; 6.3.1 Collaborative Filtering Approach; 6.3.2 Content-Based Techniques; 6.3.3 Association Rule Mining; References; 7 Folksonomy and Tag-Based Recommender Systems in E-Learning Environments; Abstract; 7.1 Comprehensive Survey of the State-of-the-Art in Collaborative Tagging Systems and Folksonomy; 7.1.1 Tagging Rights; 7.1.2 Tagging Support; 7.1.3 Aggregation; 7.1.4 Types of Object. 
505 8 |a 7.1.5 Sources of Material7.1.6 Resource Connectivity; 7.1.7 Social Connectivity; 7.2 A Model for Tagging Activities; 7.3 Tag-Based Recommender Systems; 7.3.1 Extension with Tags; 7.3.2 Collecting Tags; 7.4 Applying Tag-Based Recommender Systems to E-Learning Environments; 7.4.1 FolkRank Algorithm; 7.4.2 PLSA; 7.4.3 Collaborative Filtering Based on Collaborative Tagging; 7.4.4 Tensor Factorization Technique for Tag Recommendation; 7.4.4.1 SVD Algorithm; 7.4.4.2 Tensors and HOSVD Algorithm; 7.4.4.3 Ranking with Tensor Factorization; 7.4.4.4 Multi-mode Recommendations; 7.4.5 Most Popular Tags. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This monograph provides a comprehensive research review of intelligent techniques for personalisation of e-learning systems. Special emphasis is given to intelligent tutoring systems as a particular class of e-learning systems, which support and improve the learning and teaching of domain-specific knowledge. A new approach to perform effective personalization based on Semantic web technologies achieved in a tutoring system is presented. This approach incorporates a recommender system based on collaborative tagging techniques that adapts to the interests and level of students' knowledge. These innovations are important contributions of this monograph. Theoretical models and techniques are illustrated on a real personalised tutoring system for teaching Java programming language. The monograph is directed to, students and researchers interested in the e-learning and personalization techniques. . 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Web-based instruction. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Klašnja-Milićević, Aleksandra,  |e author. 
700 1 |a Vesin, Boban,  |e author. 
700 1 |a Ivanović, Mirjana,  |e author. 
700 1 |a Budimac, Zoran,  |e author. 
700 1 |a Jain, L. C.,  |e author. 
776 0 8 |i Print version:  |a Klasnja-Milićević, Aleksandra  |t E-Learning Systems : Intelligent Techniques for Personalization  |d Cham : Springer,c2016  |z 9783319411613 
830 0 |a Intelligent systems reference library ;  |v v. 112. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-319-41163-7  |y Plný text 
992 |c NTK-SpringerENG 
999 |c 99227  |d 99227 
993 |x NEPOSILAT  |y EIZ