Spatial data handling in big data era : select papers from the 17th IGU Spatial Data Handling Symposium 2016

This proceedings volume introduces recent work on the storage, retrieval and visualization of spatial Big Data, data-intensive geospatial computing and related data quality issues. Further, it addresses traditional topics such as multi-scale spatial data representations, knowledge discovery, space-t...

Full description

Saved in:
Bibliographic Details
Corporate Author: International Symposium on Spatial Data Handling Beijing, China)
Other Authors: Zhou, Chenghu, (Editor), Su, Fenzhen, (Editor), Harvey, Francis, (Editor), Xu, Jun, (Editor)
Format: eBook
Language: English
Published: Singapore : Springer, 2017.
Series: Advances in geographic information science.
Subjects:
ISBN: 9789811044243
9789811044236
Physical Description: 1 online resource (xiii, 237 pages) : illustrations

Cover

Table of contents

LEADER 06485cam a2200517Ii 4500
001 98912
003 CZ-ZlUTB
005 20240914111556.0
006 m o d
007 cr cnu|||unuuu
008 170508s2017 si a ob 100 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d EBLCP  |d N$T  |d YDX  |d OCLCF  |d UAB  |d ESU  |d AZU  |d UPM  |d IOG  |d COO  |d MERER  |d OCLCQ  |d U3W  |d STF  |d CAUOI  |d KSU  |d VT2  |d OCLCQ  |d WYU  |d AUD  |d UKMGB  |d UKAHL  |d OCLCQ  |d ERF  |d LEATE  |d OCLCQ  |d SFB  |d OCLCQ 
020 |a 9789811044243  |q (electronic bk.) 
020 |z 9789811044236  |q (print) 
024 7 |a 10.1007/978-981-10-4424-3  |2 doi 
035 |a (OCoLC)986224508  |z (OCoLC)986570213  |z (OCoLC)986859172  |z (OCoLC)992543571  |z (OCoLC)992916077  |z (OCoLC)999516012  |z (OCoLC)1005802750  |z (OCoLC)1011791231  |z (OCoLC)1048159523  |z (OCoLC)1066547645  |z (OCoLC)1081776915  |z (OCoLC)1112547131  |z (OCoLC)1112867522  |z (OCoLC)1117265873  |z (OCoLC)1122810093  |z (OCoLC)1125671628 
111 2 |a International Symposium on Spatial Data Handling  |n (17th :  |d 2016 :  |c Beijing, China) 
245 1 0 |a Spatial data handling in big data era :  |b select papers from the 17th IGU Spatial Data Handling Symposium 2016 /  |c Chenghu Zhou, Fenzhen Su, Francis Harvey, Jun Xu, editors. 
264 1 |a Singapore :  |b Springer,  |c 2017. 
300 |a 1 online resource (xiii, 237 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a Advances in geographic information science,  |x 1867-2434 
505 0 |a Preface; Organizing Committee; General Chair; Program Chair; Organizing Committee; Program Committee; Contents; About the Editors; Data Intensive Geospatial Computing and Data Quality; 1 Using T-Drive and BerlinMod in Parallel SECONDO for Performance Evaluation of Geospatial Big Data Processing; Introduction; Related Work; Methodology; Datasets; T-Drive; BerlinMOD; Parallel Secondo; Hardware Computer System; Results and Discussions; T-Drive Performance; BerlinMOD Performance; Query 1; Query 2; Query 3; Query 4; Conclusions and Future Work; References. 
505 8 |a 2 Integrated Geo-information Database for Geological Disposal of High-Level Radioactive Waste in ChinaIntroduction; Construction of Geo-information Model; Logic Design of Geo-information Model; Physical Design of Geo-information Model; Construction of an Integrated Geo-information Database; Development of Management System for Integrated Geo-information Database; Accomplishment of Metadata Management; Development of Management System; Conclusions; References; 3 Analyzing the Uncertainties of Ground Validation for Remote Sensing Land Cover Mapping in the Era of Big Geographic Data. 
505 8 |a IntroductionMethodology; Study Area and Test Data; Sampling Scheme; Reliability of Ground References; Accuracy Assessment; Results and Analysis; Overall Accuracy of the Land Cover Classification; Consistency of Reference Data; Discussion and Conclusions; Acknowledgements; References; 4 Error in Spatial Ecology (PVM); Introduction; Background; Descriptions, Depictions, or Diagrams; Collecting Data; Changing the Data Model; The Database Oriented Technique; Just How Bad Is an Area-Class Map of Forest Types?; Conclusion; References; Web and Crowd Sourcing Spatial Data Mining. 
505 8 |a 5 A Framework for Event Information Extraction from Chinese News OnlineIntroduction; Related Work; Event Model; Definition of Event; Architecture of Events; System Framework; Overview; Data Retrieval; Document Preprocessing; Information Extraction; Natural Language Processing; Pattern Analysis; Knowledge Base; Experiment; Conclusion and Future Work; Acknowledgements; References; 6 Evaluating Neighborhood Environment and Utilitarian Walking Behavior with Big Data: A Case Study in Tokyo Metropolitan Area; Introduction; Methodology; Study Area; Measures of Neighborhood Environment. 
505 8 |a Residential DensityStreet Connectivity; Land Use Diversity; Bus Stop Density; Railway Stations Accessibility; Multi-criteria Evaluation Approach; Measures of Utilitarian Walking Behavior; Visualization with Standard 1 Km × 1 Km Mesh; Results; Evaluation Results of Five Criteria; Evaluation Results of Neighborhood Environment (Walkability); Evaluation Results of Utilitarian Walking Behavior; Comparison Between Walkability and Utilitarian Walking Time; Discussion; Conclusion; References; 7 A Space-Time GIS for Visualizing and Analyzing Clusters in Large Tracking Datasets; Introduction. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This proceedings volume introduces recent work on the storage, retrieval and visualization of spatial Big Data, data-intensive geospatial computing and related data quality issues. Further, it addresses traditional topics such as multi-scale spatial data representations, knowledge discovery, space-time modeling, and geological applications. Spatial analysis and data mining are increasingly facing the challenges of Big Data as more and more types of crowd sourcing spatial data are used in GIScience, such as movement trajectories, cellular phone calls, and social networks. In order to effectively manage these massive data collections, new methods and algorithms are called for. The book highlights state-of-the-art advances in the handling and application of spatial data, especially spatial Big Data, offering a cutting-edge reference guide for graduate students, researchers and practitioners in the field of GIScience. 
504 |a Includes bibliographical references at the end of each chapters. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Geographic information systems  |v Congresses. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Zhou, Chenghu,  |e editor. 
700 1 |a Su, Fenzhen,  |e editor. 
700 1 |a Harvey, Francis,  |e editor. 
700 1 |a Xu, Jun,  |e editor. 
776 0 8 |i Print version:  |a International Symposium on Spatial Data Handling (17th : 2016 : Beijing, China).  |t Spatial data handling in big data era.  |d Singapore : Springer, 2017  |z 9811044236  |z 9789811044236  |w (OCoLC)975027773 
830 0 |a Advances in geographic information science. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-981-10-4424-3  |y Plný text 
992 |c NTK-SpringerEES 
999 |c 98912  |d 98912 
993 |x NEPOSILAT  |y EIZ