Phytoremediation potential of bioenergy plants

The globally escalating population necessitates production of more goods and services to fulfil the expanding demands of human beings which resulted in urbanization and industrialization. Uncontrolled industrialization caused two major problems - energy crisis and accelerated environmental pollution...

Full description

Saved in:
Bibliographic Details
Other Authors Bauddh, Kuldeep (Editor), Singh, Bhaskar (Environmental sciences teacher) (Editor), Korstad, John (Editor)
Format Electronic eBook
LanguageEnglish
Published Singapore : Springer, 2017.
Subjects
Online AccessFull text
ISBN9789811030840
9789811030833
Physical Description1 online resource (xx, 472 pages) : illustrations (some color)

Cover

Table of Contents:
  • Dedication; Foreword; Preface; Acknowledgement; Contents; Contributors; About the Editors; 1: Phytoremediation: A€Multidimensional and€Ecologically Viable Practice for€the€Cleanup of€Environmental Contaminants; 1.1 Introduction; 1.1.1 Contaminants: Sources, Types and€Effects; 1.1.2 Heavy Metals; 1.1.3 Organic Pollutants; 1.1.4 Radioactive Contaminants; 1.2 Contaminant Remediation Techniques; 1.3 Phytoremediation: A€Successful and€Environment-ƯFriendly Approach; 1.3.1 Types of€Phytoremediation; 1.3.1.1 Phytoextraction; 1.3.1.2 Phytostabilization; 1.3.1.3 Phytofiltration.
  • 1.3.1.4 Phytovolatilization1.3.2 Mechanism of€Phytoremediation; 1.3.2.1 Factors That Affect Uptake Mechanisms; 1.3.2.1.1 Plant Species; 1.3.2.1.2 Properties of€Growing Medium; 1.3.2.1.3 Root Zone; 1.3.2.1.4 Uptake Mechanism by Vegetative Parts; 1.3.2.1.5 Chelating Agents; 1.3.3 Indices Used for€Assessment of€Phytoremediation Potential; 1.3.4 Different Aspects of€Phytoremediation; 1.3.4.1 Application of€Edible Crops; 1.3.4.2 Application of€Weeds; 1.3.4.3 Application of€Trees; 1.3.4.4 Application of€Bioenergy Crops; 1.3.4.5 Aromatic Plants Used in€Phytoremediation.
  • 1.3.4.6 Plants as€Hyperaccumulators1.3.5 Application of€Chemical and€Biological Amendments to€Enhance Phytoremediation; 1.3.6 Role of€Bacteria in€Enhancement of€Phytoremediation Potential of€Plants; 1.3.7 Role of€Fungi in€Enhancement of€Phytoremediation Potential of€Plants; 1.3.8 Technological Interventions in€Plants Used for€Phytoremediation; 1.3.8.1 Transgenic Plants and€Phytoremediation; 1.3.8.2 Role of€Electrokinesis for€Enhanced Phytoremediation; 1.3.9 Multitasking Approach of€Phytoremediation; 1.3.10 Economic Feasibility of€Phytoremediation Over€Conventional Methods.
  • 1.3.11 Constraints of€Phytoremediation1.4 Conclusions; References; 2: Bioenergy: A€Sustainable Approach for€Cleaner Environment; 2.1 Bioenergy; 2.2 Bioenergy Forms; 2.2.1 Combustion: Heat and€Power; 2.2.2 Gaseous Energy Forms; 2.2.3 Liquid Biofuels; 2.3 Plant-Based Feedstocks for€Bioenergy; 2.3.1 Oil Crops; 2.3.2 Woody Feedstock; 2.3.3 Energy Crops; 2.4 Microorganisms for€Bioenergy; 2.4.1 Microalgae; 2.4.2 Bacteria; 2.4.3 Fungus; 2.5 Bioenergy from€Waste; 2.5.1 Agro-industrial Waste Biomass; 2.5.2 Sewage Sludge; 2.5.3 Animal Waste.
  • 2.6 Environmental and€Socio-economic Significance2.7 Coupling Phytoremediation with€Bioenergy: An€Integrated Biorefinery Approach; 2.8 Conclusion; References; 3: Phytoremediation of€Heavy Metal-ƯContaminated Soil Using Bioenergy Crops; 3.1 Introduction; 3.2 Bioenergy Crops; 3.3 Heavy Metals and€Their Remediation Using Bioenergy Crops; 3.3.1 Willow; 3.3.2 Poplar; 3.3.3 Jatropha; 3.3.4 Castor; 3.3.5 Grasses; 3.4 Strategies to€Increase Phytoremediation Potential of€Bioenergy Crops; 3.4.1 Metal Solubilizing Agent; 3.4.2 Symbiotic Endophytic Microorganisms; 3.4.3 Genetic Engineering.