Pulmonary vasculature redox signaling in health and disease
The main goal of this book is to form a high-quality platform in which well-known and emerging pioneering basic, translational and clinical scientists can present their latest, exciting findings in the studies of redox signaling in the pulmonary vasculature. Content from outstanding investigators wi...
Saved in:
| Other Authors | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Cham, Switzerland :
Springer,
2017.
|
| Series | Advances in experimental medicine and biology ;
v. 967. |
| Subjects | |
| Online Access | Full text |
| ISBN | 9783319632452 9783319632445 |
| ISSN | 0065-2598 ; |
| Physical Description | 1 online resource (xxi, 422 pages) : illustrations (some color) |
Cover
Table of Contents:
- Preface
- About the Editor
- Contents
- Contributors
- Adventitial Fibroblast Nox4 Expression and ROS Signaling in Pulmonary Arterial Hypertension
- 1 Pulmonary Arterial Hypertension
- 2 Reactive Oxygen Species, NADPH Oxidase and PAH
- 3 Nox4 Expression in PAH
- 4 Enzymatic Properties of Nox4
- 5 Role of the Adventitial Fibroblast and Nox4 in PAH
- References
- Role of Transcription Factors in Pulmonary Artery Smooth Muscle Cells: An Important Link to Hypoxic Pulmonary Hypertension
- 1 Introduction
- 2 Roles of Transcription Factors in Lung Diseases2.1 NF-ÎðB
- 2.2 AP-1
- 2.3 STAT
- 2.4 TCF7
- 2.5 NRF2
- 2.6 HIF-1
- 3 Redox-Sensitive Signaling in SMC Regulation: Role of TFs
- 4 Conclusion and Future Perspective
- References
- Molecular Basis of Nitrative Stress in the Pathogenesis of Pulmonary Hypertension
- 1 Introduction
- 2 Molecular Mechanisms of Nitrative Stress in the Pathogenesis of Pulmonary Hypertension
- 3 Molecular Sources of Reactive Nitrogen Species in Pulmonary Hypertension
- 4 Molecular Sources of Reactive Oxygen Species in Pulmonary Hypertension5 Nitrative Stress in Pulmonary Hypertension Patients
- 6 Conclusions
- References
- Pentose Shunt, Glucose-6-ÂƯPhosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension
- 1 Pulmonary Hypertension
- 2 Warburg Effect and Pulmonary Hypertension
- 3 Glucose Metabolism, Pentose Shunt, and Glucose-ÂƯ6-ÂƯPhosphate Dehydrogenase in Pulmonary Hypertension
- 3.1 Glucose Metabolism is Altered in Pulmonary Hypertension
- 3.2 Glucose-6-Phosphate Dehydrogenase Inhibition Relaxes Pulmonary Arteries, Reduces Inflammatory Cytokines and Cell Proliferation, and Induces Cell Apoptosis3.3 Glucose-6-Phosphate Dehydrogenase Inhibitor Treatment Reduces Pulmonary Hypertension
- 4 G6PD and CD133 (+) Cells in Pulmonary Hypertension
- 4.1 CD133 (+) Cells
- 4.2 Glucose Metabolism and G6PD in CD133 (+) Cells
- 4.3 CD133 (+) Cells Increase in Pulmonary Hypertension
- 4.4 CD133 (+) Cells Exacerbate Pulmonary Arterial Hypertension
- References
- Redox Regulation of the Superoxide Dismutases SOD3 and SOD2 in the Pulmonary Circulation1 Introduction
- 2 The Extracellular SOD3 Enzyme
- 2.1 Characterization of SOD3
- 2.2 Redox Regulation of SOD3
- 2.2.1 Intrasubunit Disulfide Bonds
- 2.2.2 Intersubunit Disulfide Bond
- 2.2.3 Proteolytic Cleavage of SOD3
- 2.3 Regulation of SOD3 Activity
- 2.4 Regulation of SOD3 Gene Expression
- 2.5 Redox Regulation by SOD3 in Pulmonary Hypertension
- 3 The Mitochondrial SOD2 Enzyme
- 3.1 Characterization of SOD2