Spatial and spatio-temporal Bayesian models with R-INLA

Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and...

Full description

Saved in:
Bibliographic Details
Main Authors: Blangiardo, Marta (Author), Cameletti, Michela (Author)
Format: Book
Language: English
Published: Chichester : Wiley, 2015
Edition: First published
Subjects:
ISBN: 9781118326558
Physical Description: xii, 308 stran : ilustrace, mapy ; 24 cm

Cover

Table of contents

LEADER 02721cam a2200529 i 4500
001 86616
003 CZ ZlUTB
005 20240829161804.0
007 ta
008 150121s2015 xxkab f f 001 0 eng d
020 |a 9781118326558  |q (vázáno) 
040 |a GBV  |b cze  |c GBVCP  |d CBD007  |d ZLD002  |e rda 
072 7 |a 519.1/.8  |x Kombinatorika. Teorie grafů. Matematická statistika. Operační výzkum. Matematické modelování  |2 Konspekt  |9 13 
080 |a 519.226  |2 MRF 
080 |a 519.22-023.5  |2 MRF 
080 |a 519.673  |2 MRF 
080 |a 519.25-022.3-023.5  |2 MRF 
080 |a 004.42R  |2 MRF 
080 |a (035)  |2 MRF 
100 1 |a Blangiardo, Marta  |7 jcu2016931819  |4 aut 
245 1 0 |a Spatial and spatio-temporal Bayesian models with R-INLA /  |c Marta Blangiardo , Michela Cameletti 
250 |a First published 
264 1 |a Chichester :  |b Wiley,  |c 2015 
300 |a xii, 308 stran :  |b ilustrace, mapy ;  |c 24 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a bez média  |b n  |2 rdamedia 
338 |a svazek  |b nc  |2 rdacarrier 
504 |a Obsahuje bibliografie a rejstřík 
520 2 |a Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio­-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations 
650 0 7 |a Bayesova teorie  |7 ph135362  |2 czenas 
650 0 7 |a prostorová statistika  |7 ph250784  |2 czenas 
650 0 7 |a matematické modely  |7 ph543021  |2 czenas 
650 0 7 |a časoprostorová data  |7 ph720714  |2 czenas 
650 0 7 |a R (software)  |7 ph571956  |2 czenas 
650 0 9 |a Bayesian theory  |2 eczenas 
650 0 9 |a spatial statistics  |2 eczenas 
650 0 9 |a mathematical models  |2 eczenas 
650 0 9 |a spatio-temporal data  |2 eczenas 
650 0 9 |a R (software)  |2 eczenas 
655 7 |a příručky  |7 fd133209  |2 czenas 
655 9 |a handbooks and manuals  |2 eczenas 
700 1 |a Cameletti, Michela  |7 jcu2016931822  |4 aut 
910 |a ZLD002 
992 |a BK  |b SK  |d 1 
998 |a 007209706 
999 |c 86616  |d 86616 
952 |0 0  |1 0  |4 0  |6 519BLANGIARDOM  |7 0  |8 BOOK  |9 141692  |a UTBZL  |b UTBZL  |c 005  |d 2017-01-16  |l 1  |o 519/BLANGIARDO,M.  |p 420010168775  |r 2019-08-26  |v 1220.00  |w 2019-08-26  |x N:nákup, převod z FaME Novosák Jiří 10.2.2017;  |y 01