Solid oxide fuel cells : from materials to system modeling

Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming o...

Full description

Saved in:
Bibliographic Details
Format Electronic eBook
LanguageEnglish
Published Cambridge : Royal soc of chemistry, 2013.
Cambridge, UK RSC Publishing, [2013]
SeriesRSC energy and environment series ; no.7.
Subjects
Online AccessFull text
ISBN9781849737777
9781680158151
9781849736541
ISSN2044-0774 ;
Physical Description1 online zdroj (xiii, 523 pages) : illustrations (black and white, and color).

Cover

Table of Contents:
  • Machine generated contents note: ch. 1 Introduction to Stationary Fuel Cells / C. Ozgur Colpan
  • 1.1.General Introduction to Fuel Cells
  • 1.2.Introduction to Low-Temperature Fuel Cells
  • 1.3.Introduction to Solid Oxide Fuel Cells
  • 1.3.1.Classification of SOFC Systems
  • 1.3.2.Fuel Options for SOFC
  • 1.4.Integrated SOFC Systems
  • 1.5.Basic SOFC Modelling
  • 1.6.Case Study
  • 1.6.1.Analysis
  • 1.6.2.Results and Discussion
  • 1.7.Conclusions
  • References
  • ch. 2 Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs) / Zongping Shao
  • 2.1.A General Introduction to Electrolyte of SOFCs
  • 2.2.The Requirements of Electrolyte
  • 2.3.Classification of Electrolytes
  • 2.3.1.Oxygen-ion Conducting Electrolyte
  • 2.3.2.Proton-conducting Electrolyte
  • 2.3.3.Dual-phase Composite Electrolyte
  • 2.4.Future Vision
  • References
  • ch. 3 Cathode Material Development / Changrong Xia
  • 3.1.Introduction
  • 3.2.Cathodes for Oxygen Ion-Conducting Electrolyte Based SOFCs
  • Contents note continued: 3.2.1.Electron Conducting Cathodes
  • 3.2.2.Mixed Oxygen Ion-Electron Conducting Cathodes
  • 3.2.3.Microstructure Optimized Cathodes
  • 3.2.4.Cathode Reaction Mechanisms
  • 3.3.Cathodes for Proton-Conducting Electrolyte Based SOFCs
  • 3.3.1.Electron-Conducting Cathodes
  • 3.3.2.Mixed Oxygen Ion-Electron Conducting Cathodes
  • 3.3.3.Mixed Electron-Proton Conducting Cathodes
  • 3.3.4.Microstructure Optimized Cathodes
  • 3.3.5.Cathode Reaction Mechanisms
  • 3.4.Summary and Conclusions
  • Acknowledgements
  • References
  • ch. 4 Anode Material Development / Josephine M. Hill
  • 4.1.Required Properties of Anode Materials
  • 4.2.Hydrogen Fuel
  • 4.3.Methane Fuel
  • 4.3.1.Conventional Ni/YSZ Anodes
  • 4.3.2.Alternative Anodes
  • 4.4.Higher Hydrocarbon Fuels (Propane and Butane)
  • 4.5.Fuels from Biomass
  • 4.5.1.Biomass-Simulated Gas
  • 4.5.2.Biomass - Actual Gas
  • 4.6.Liquid Fuels
  • 4.7.Ammonia Fuel
  • 4.8.Conclusions
  • References
  • Contents note continued: ch. 5 Interconnect Materials for SOFC Stacks / Christopher Johnson
  • 5.1.Introduction
  • 5.2.Lanthanum Chromites as Interconnect
  • 5.2.1.Conductivity
  • 5.2.2.Thermal Expansion
  • 5.2.3.Gas Tightness, Processing and Chemical Stability
  • 5.2.4.Other Ceramic Interconnect
  • 5.2.5.Applications
  • 5.3.Metallic Alloys as Interconnect
  • 5.3.1.Selection of Metallic Materials
  • 5.3.2.Problems for Metallic Materials as Interconnect
  • 5.3.3.Interconnect Coatings
  • 5.3.4.Applications of Metallic Interconnects
  • 5.4.Concluding Remarks
  • References
  • ch. 6 Nano-structured Electrodes of Solid Oxide Fuel Cells by Infiltration / San Ping Jiang
  • 6.1.Introduction
  • 6.2.Infiltration Process
  • 6.2.1.The Technique
  • 6.2.2.Factors Affecting Infiltration Process and Microstructure
  • 6.3.Nano-structured Electrodes
  • 6.3.1.Performance Promotion Factor
  • 6.3.2.Nano-structured Cathodes
  • 6.3.3.Nano-structured Anodes
  • Contents note continued: 6.4.Microstructure and Microstructural Stability of Nano-structured Electrodes
  • 6.4.1.Microstructure Effect
  • 6.4.2.Microstructural Stability of Nano-structured Electrodes
  • 6.5.Electrocatalytic Effects of Infiltrated Nanoparticles
  • 6.6.Conclusions
  • Acknowledgement
  • References
  • ch. 7 Three Dimensional Reconstruction of Solid Oxide Fuel Cell Electrodes / N. P. Brandon
  • 7.1.The Importance of 3D Characterisation and the Limitations of Stereology
  • 7.2.Focused Ion Beam Characterisation
  • 7.2.1.The FIB-SEM Instrument
  • 7.2.2.Application of FIB-SEM Techniques to SOFC Materials
  • 7.3.Microstructural Characterisation using X-rays
  • 7.3.1.X-ray Microscopy and Tomography
  • 7.3.2.Lab X-ray Instruments
  • 7.3.3.Synchrotron X-ray Instruments
  • 7.3.4.4-Dimensional Tomography
  • 7.4.Data Analysis and Image Based Modelling
  • 7.4.1.Data Analysis
  • 7.4.2.Image Based Modelling
  • 7.5.Conclusions
  • References
  • Contents note continued: ch. 8 Three-Dimensional Numerical Modelling of Ni-YSZ Anode / Nobuhide Kasagi
  • 8.1.Introduction
  • 8.2.Experimental
  • 8.2.1.Button Cell Experiment
  • 8.2.2.Microstructure Reconstruction Using FIB-SEM
  • 8.3.Numerical Method
  • 8.3.1.Quantification of Microstructural Parameters
  • 8.3.2.Governing Equations for Polarization Simulation
  • 8.3.3.Computational Scheme
  • 8.4.Results and Discussions
  • 8.5.Conclusions
  • Acknowledgements
  • References
  • ch. 9 Multi-scale Modelling of Solid Oxide Fuel Cells / Wolfgang G. Bessler
  • 9.1.Introduction and Motivation
  • 9.2.Modelling Methodologies: From the Atomistic to the System Scale
  • 9.2.1.Overview
  • 9.2.2.Molecular Level: Atomistic Modelling
  • 9.2.3.Electrode Level (I): Electrochemistry with Mean-field Elementary Kinetics
  • 9.2.4.Electrode Level (II): Porous Mass and Charge Transport
  • 9.2.5.Cell Level: Coupling of Electrochemistry with Mass, Charge and Heat Transport
  • Contents note continued: 9.2.6.Stack Level: Computational Fluid Dynamics Based Design
  • 9.2.7.System Level
  • 9.3.Bridging the Gap Between Scales
  • 9.3.1.General Aspects
  • 9.3.2.Electrochemistry
  • 9.3.3.Transport
  • 9.3.4.Structure
  • 9.4.Multi-scale Models for SOFC System Simulation and Control
  • 9.4.1.Pressurized SOFC System for a Hybrid Power Plant
  • 9.4.2.Tubular SOFC System for Mobile APU Applications
  • 9.5.Conclusions
  • Acknowledgements
  • References
  • ch. 10 Fuel Cells Running on Alternative Fuels / Jing-Li Luo
  • 10.1.Introduction
  • 10.2.Fuel Cell Reactor Set-up
  • 10.3.SOFCs Running on Sourgas
  • 10.4.SOFCs Running on C2H6 and C3H8
  • 10.4.1.Development of Electrolyte of PC-SOFCs
  • 10.4.2.Development of Anode Materials of PC-SOFCs
  • 10.5.SOFCs Running on Syngas Containing H2S
  • 10.6.SOFCs Running on Pure H2S
  • 10.7.Summary
  • Acknowledgements
  • References
  • ch. 11 Long Term Operating Stability / Harumi Yokokawa
  • 11.1.Introduction
  • Contents note continued: 11.2.Durability of Stacks/Systems
  • 11.2.1.Determination of Stack Performance
  • 11.2.2.Performance Degradation and Materials Deteriorations
  • 11.2.3.Impurities and their Poisoning Effects on Electrode Reactivity
  • 11.3.Deteriorations of Electrolytes
  • 11.3.1.Destabilization of Mn Dissolved YSZ
  • 11.3.2.Conductivity Decrease in Ni-dissolved YSZ
  • 11.4.Performance Degradations of Cathode and Anodes
  • 11.4.1.Cathode Poisoning
  • 11.4.2.Sintering of Ni Cermet Anodes
  • 11.5.For Future Work
  • 11.6.Conclusions
  • Acknowledgement
  • References
  • ch. 12 Application of SOFCs in Combined Heat, Cooling and Power Systems / P. Kazempoor
  • 12.1.Introduction
  • 12.1.1.Drivers for Interest in Co- and Tri-generation Using Fuel Cells
  • 12.1.2.Overview of CHP and CCHP
  • 12.2.Application Characteristics & Building Integration
  • 12.2.1.Commercial Buildings
  • 12.2.2.Residential Applications
  • 12.2.3.Building Integration & Operating Strategies
  • Contents note continued: 12.3.Overview of SOFC-CHP/CCHP Systems
  • 12.3.1.SOFC System Description for CHP (Co-generation)
  • 12.3.2.SOFC System Description for CCHP (Tri-generation)
  • 12.4.Modelling Approaches: Cell to System
  • 12.4.1.System-level Modelling and Performance Estimation
  • 12.4.2.Cell/Stack Modelling for SOFC System Simulation
  • 12.4.3.System Optimization Using Techno-economic Model Formulations
  • 12.5.Evaluation of SOFC Systems in CCHP Applications
  • 12.5.1.Micro-CHP
  • 12.5.2.Large-scale CHP and CCHP Applications
  • 12.6.Commercial Developments of SOFC-CHP Systems
  • 12.6.1.Commercialization Efforts
  • 12.6.2.Demonstrations
  • 12.7.Market Barriers and Challenges
  • 12.7.1.Energy Pricing
  • 12.7.2.SOFC Costs
  • 12.7.3.Technical Barriers
  • 12.7.4.Market Barriers and Environmental Impact
  • 12.8.Summary
  • References
  • ch. 13 Integrated SOFC and Gas Turbine Systems / Massimo Dentice D'Accadia
  • 13.1.Introduction
  • 13.2.SOFC/GT Prototypes
  • Contents note continued: 13.3.SOFC/GT Layouts Classification
  • 13.4.SOFC/GT Pressurized Cycles
  • 13.4.1.Internally Reformed SOFC/GT Cycles
  • 13.4.2.Anode Recirculation
  • 13.4.3.Heat Recovery Steam Generator (HRSG)
  • 13.4.4.Externally Reformed SOFC/GT Cycles
  • 13.4.5.Hybrid SOFC/GT-Cheng Cycles
  • 13.4.6.Hybrid SOFC/Humidified Air Turbine (HAT)
  • 13.4.7.Hybrid SOFC/GT-ITSOFC Cycles
  • 13.4.8.Hybrid SOFC/GT-Rankine Cycles
  • 13.4.9.Hybrid SOFC/GT with Air Recirculation or Exhaust Gas Recirculation (EGR)
  • 13.5.SOFC/GT Atmospheric Cycles
  • 13.6.SOFC/GT Power Plant: Control Strategies
  • 13.7.Hybrid SOFC/GT Systems Fed by Alternative Fuels
  • 13.8.IGCC SOFC/GT Power Plants
  • References
  • ch. 14 Modelling and Control of Solid Oxide Fuel Cell / Bo Huang
  • 14.1.Static Identification Model
  • 14.1.1.Nonlinear Modelling Based on LS-SVM
  • 14.1.2.Nonlinear Modelling Based on GA-RBF
  • 14.2.Dynamic Identification Modelling for SOFC
  • 14.2.1.ANFIS Identification Modelling
  • Contents note continued: 14.2.2.Hammerstein Identification Modelling
  • 14.3.Control Strategies of the SOFC
  • 14.3.1.Constant Voltage Control
  • 14.3.2.Constant Fuel Utilization Control
  • 14.3.3.Simulation
  • 14.4.Conclusions.