Solid oxide fuel cells : from materials to system modeling
Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming o...
Saved in:
| Format | Electronic eBook |
|---|---|
| Language | English |
| Published |
Cambridge :
Royal soc of chemistry,
2013.
Cambridge, UK RSC Publishing, [2013] |
| Series | RSC energy and environment series ;
no.7. |
| Subjects | |
| Online Access | Full text |
| ISBN | 9781849737777 9781680158151 9781849736541 |
| ISSN | 2044-0774 ; |
| Physical Description | 1 online zdroj (xiii, 523 pages) : illustrations (black and white, and color). |
Cover
Table of Contents:
- Machine generated contents note: ch. 1 Introduction to Stationary Fuel Cells / C. Ozgur Colpan
- 1.1.General Introduction to Fuel Cells
- 1.2.Introduction to Low-Temperature Fuel Cells
- 1.3.Introduction to Solid Oxide Fuel Cells
- 1.3.1.Classification of SOFC Systems
- 1.3.2.Fuel Options for SOFC
- 1.4.Integrated SOFC Systems
- 1.5.Basic SOFC Modelling
- 1.6.Case Study
- 1.6.1.Analysis
- 1.6.2.Results and Discussion
- 1.7.Conclusions
- References
- ch. 2 Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs) / Zongping Shao
- 2.1.A General Introduction to Electrolyte of SOFCs
- 2.2.The Requirements of Electrolyte
- 2.3.Classification of Electrolytes
- 2.3.1.Oxygen-ion Conducting Electrolyte
- 2.3.2.Proton-conducting Electrolyte
- 2.3.3.Dual-phase Composite Electrolyte
- 2.4.Future Vision
- References
- ch. 3 Cathode Material Development / Changrong Xia
- 3.1.Introduction
- 3.2.Cathodes for Oxygen Ion-Conducting Electrolyte Based SOFCs
- Contents note continued: 3.2.1.Electron Conducting Cathodes
- 3.2.2.Mixed Oxygen Ion-Electron Conducting Cathodes
- 3.2.3.Microstructure Optimized Cathodes
- 3.2.4.Cathode Reaction Mechanisms
- 3.3.Cathodes for Proton-Conducting Electrolyte Based SOFCs
- 3.3.1.Electron-Conducting Cathodes
- 3.3.2.Mixed Oxygen Ion-Electron Conducting Cathodes
- 3.3.3.Mixed Electron-Proton Conducting Cathodes
- 3.3.4.Microstructure Optimized Cathodes
- 3.3.5.Cathode Reaction Mechanisms
- 3.4.Summary and Conclusions
- Acknowledgements
- References
- ch. 4 Anode Material Development / Josephine M. Hill
- 4.1.Required Properties of Anode Materials
- 4.2.Hydrogen Fuel
- 4.3.Methane Fuel
- 4.3.1.Conventional Ni/YSZ Anodes
- 4.3.2.Alternative Anodes
- 4.4.Higher Hydrocarbon Fuels (Propane and Butane)
- 4.5.Fuels from Biomass
- 4.5.1.Biomass-Simulated Gas
- 4.5.2.Biomass - Actual Gas
- 4.6.Liquid Fuels
- 4.7.Ammonia Fuel
- 4.8.Conclusions
- References
- Contents note continued: ch. 5 Interconnect Materials for SOFC Stacks / Christopher Johnson
- 5.1.Introduction
- 5.2.Lanthanum Chromites as Interconnect
- 5.2.1.Conductivity
- 5.2.2.Thermal Expansion
- 5.2.3.Gas Tightness, Processing and Chemical Stability
- 5.2.4.Other Ceramic Interconnect
- 5.2.5.Applications
- 5.3.Metallic Alloys as Interconnect
- 5.3.1.Selection of Metallic Materials
- 5.3.2.Problems for Metallic Materials as Interconnect
- 5.3.3.Interconnect Coatings
- 5.3.4.Applications of Metallic Interconnects
- 5.4.Concluding Remarks
- References
- ch. 6 Nano-structured Electrodes of Solid Oxide Fuel Cells by Infiltration / San Ping Jiang
- 6.1.Introduction
- 6.2.Infiltration Process
- 6.2.1.The Technique
- 6.2.2.Factors Affecting Infiltration Process and Microstructure
- 6.3.Nano-structured Electrodes
- 6.3.1.Performance Promotion Factor
- 6.3.2.Nano-structured Cathodes
- 6.3.3.Nano-structured Anodes
- Contents note continued: 6.4.Microstructure and Microstructural Stability of Nano-structured Electrodes
- 6.4.1.Microstructure Effect
- 6.4.2.Microstructural Stability of Nano-structured Electrodes
- 6.5.Electrocatalytic Effects of Infiltrated Nanoparticles
- 6.6.Conclusions
- Acknowledgement
- References
- ch. 7 Three Dimensional Reconstruction of Solid Oxide Fuel Cell Electrodes / N. P. Brandon
- 7.1.The Importance of 3D Characterisation and the Limitations of Stereology
- 7.2.Focused Ion Beam Characterisation
- 7.2.1.The FIB-SEM Instrument
- 7.2.2.Application of FIB-SEM Techniques to SOFC Materials
- 7.3.Microstructural Characterisation using X-rays
- 7.3.1.X-ray Microscopy and Tomography
- 7.3.2.Lab X-ray Instruments
- 7.3.3.Synchrotron X-ray Instruments
- 7.3.4.4-Dimensional Tomography
- 7.4.Data Analysis and Image Based Modelling
- 7.4.1.Data Analysis
- 7.4.2.Image Based Modelling
- 7.5.Conclusions
- References
- Contents note continued: ch. 8 Three-Dimensional Numerical Modelling of Ni-YSZ Anode / Nobuhide Kasagi
- 8.1.Introduction
- 8.2.Experimental
- 8.2.1.Button Cell Experiment
- 8.2.2.Microstructure Reconstruction Using FIB-SEM
- 8.3.Numerical Method
- 8.3.1.Quantification of Microstructural Parameters
- 8.3.2.Governing Equations for Polarization Simulation
- 8.3.3.Computational Scheme
- 8.4.Results and Discussions
- 8.5.Conclusions
- Acknowledgements
- References
- ch. 9 Multi-scale Modelling of Solid Oxide Fuel Cells / Wolfgang G. Bessler
- 9.1.Introduction and Motivation
- 9.2.Modelling Methodologies: From the Atomistic to the System Scale
- 9.2.1.Overview
- 9.2.2.Molecular Level: Atomistic Modelling
- 9.2.3.Electrode Level (I): Electrochemistry with Mean-field Elementary Kinetics
- 9.2.4.Electrode Level (II): Porous Mass and Charge Transport
- 9.2.5.Cell Level: Coupling of Electrochemistry with Mass, Charge and Heat Transport
- Contents note continued: 9.2.6.Stack Level: Computational Fluid Dynamics Based Design
- 9.2.7.System Level
- 9.3.Bridging the Gap Between Scales
- 9.3.1.General Aspects
- 9.3.2.Electrochemistry
- 9.3.3.Transport
- 9.3.4.Structure
- 9.4.Multi-scale Models for SOFC System Simulation and Control
- 9.4.1.Pressurized SOFC System for a Hybrid Power Plant
- 9.4.2.Tubular SOFC System for Mobile APU Applications
- 9.5.Conclusions
- Acknowledgements
- References
- ch. 10 Fuel Cells Running on Alternative Fuels / Jing-Li Luo
- 10.1.Introduction
- 10.2.Fuel Cell Reactor Set-up
- 10.3.SOFCs Running on Sourgas
- 10.4.SOFCs Running on C2H6 and C3H8
- 10.4.1.Development of Electrolyte of PC-SOFCs
- 10.4.2.Development of Anode Materials of PC-SOFCs
- 10.5.SOFCs Running on Syngas Containing H2S
- 10.6.SOFCs Running on Pure H2S
- 10.7.Summary
- Acknowledgements
- References
- ch. 11 Long Term Operating Stability / Harumi Yokokawa
- 11.1.Introduction
- Contents note continued: 11.2.Durability of Stacks/Systems
- 11.2.1.Determination of Stack Performance
- 11.2.2.Performance Degradation and Materials Deteriorations
- 11.2.3.Impurities and their Poisoning Effects on Electrode Reactivity
- 11.3.Deteriorations of Electrolytes
- 11.3.1.Destabilization of Mn Dissolved YSZ
- 11.3.2.Conductivity Decrease in Ni-dissolved YSZ
- 11.4.Performance Degradations of Cathode and Anodes
- 11.4.1.Cathode Poisoning
- 11.4.2.Sintering of Ni Cermet Anodes
- 11.5.For Future Work
- 11.6.Conclusions
- Acknowledgement
- References
- ch. 12 Application of SOFCs in Combined Heat, Cooling and Power Systems / P. Kazempoor
- 12.1.Introduction
- 12.1.1.Drivers for Interest in Co- and Tri-generation Using Fuel Cells
- 12.1.2.Overview of CHP and CCHP
- 12.2.Application Characteristics & Building Integration
- 12.2.1.Commercial Buildings
- 12.2.2.Residential Applications
- 12.2.3.Building Integration & Operating Strategies
- Contents note continued: 12.3.Overview of SOFC-CHP/CCHP Systems
- 12.3.1.SOFC System Description for CHP (Co-generation)
- 12.3.2.SOFC System Description for CCHP (Tri-generation)
- 12.4.Modelling Approaches: Cell to System
- 12.4.1.System-level Modelling and Performance Estimation
- 12.4.2.Cell/Stack Modelling for SOFC System Simulation
- 12.4.3.System Optimization Using Techno-economic Model Formulations
- 12.5.Evaluation of SOFC Systems in CCHP Applications
- 12.5.1.Micro-CHP
- 12.5.2.Large-scale CHP and CCHP Applications
- 12.6.Commercial Developments of SOFC-CHP Systems
- 12.6.1.Commercialization Efforts
- 12.6.2.Demonstrations
- 12.7.Market Barriers and Challenges
- 12.7.1.Energy Pricing
- 12.7.2.SOFC Costs
- 12.7.3.Technical Barriers
- 12.7.4.Market Barriers and Environmental Impact
- 12.8.Summary
- References
- ch. 13 Integrated SOFC and Gas Turbine Systems / Massimo Dentice D'Accadia
- 13.1.Introduction
- 13.2.SOFC/GT Prototypes
- Contents note continued: 13.3.SOFC/GT Layouts Classification
- 13.4.SOFC/GT Pressurized Cycles
- 13.4.1.Internally Reformed SOFC/GT Cycles
- 13.4.2.Anode Recirculation
- 13.4.3.Heat Recovery Steam Generator (HRSG)
- 13.4.4.Externally Reformed SOFC/GT Cycles
- 13.4.5.Hybrid SOFC/GT-Cheng Cycles
- 13.4.6.Hybrid SOFC/Humidified Air Turbine (HAT)
- 13.4.7.Hybrid SOFC/GT-ITSOFC Cycles
- 13.4.8.Hybrid SOFC/GT-Rankine Cycles
- 13.4.9.Hybrid SOFC/GT with Air Recirculation or Exhaust Gas Recirculation (EGR)
- 13.5.SOFC/GT Atmospheric Cycles
- 13.6.SOFC/GT Power Plant: Control Strategies
- 13.7.Hybrid SOFC/GT Systems Fed by Alternative Fuels
- 13.8.IGCC SOFC/GT Power Plants
- References
- ch. 14 Modelling and Control of Solid Oxide Fuel Cell / Bo Huang
- 14.1.Static Identification Model
- 14.1.1.Nonlinear Modelling Based on LS-SVM
- 14.1.2.Nonlinear Modelling Based on GA-RBF
- 14.2.Dynamic Identification Modelling for SOFC
- 14.2.1.ANFIS Identification Modelling
- Contents note continued: 14.2.2.Hammerstein Identification Modelling
- 14.3.Control Strategies of the SOFC
- 14.3.1.Constant Voltage Control
- 14.3.2.Constant Fuel Utilization Control
- 14.3.3.Simulation
- 14.4.Conclusions.