Mechanics of solid polymers : theory and computational modeling

Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mech...

Full description

Saved in:
Bibliographic Details
Main Author: Bergström, Jörgen, (Author)
Format: eBook
Language: English
Published: Amsterdam : William Andrew is an imprint of Elsevier, 2015.
Edition: First edition.
Subjects:
ISBN: 9780323322966
9780323311502
Physical Description: 1 online zdroj.

Cover

Table of contents

LEADER 05398cam a2200469 i 4500
001 82647
003 CZ ZlUTB
005 20240911221650.0
006 m o d
007 cr |n
008 150716s2015 ne sb 001 0 eng d
020 |a 9780323322966  |q (ebook) 
020 |z 9780323311502 
035 |a (OCoLC)913869177  |z (OCoLC)914434529 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OPELS  |d YDXCP  |d EBLCP  |d IDEBK  |d KNOVL  |d COO  |d OCLCF  |d ZCU 
100 1 |a Bergström, Jörgen,  |e author. 
245 1 0 |a Mechanics of solid polymers :  |b theory and computational modeling /  |c Jörgen Bergström. 
250 |a First edition. 
264 1 |a Amsterdam :  |b William Andrew is an imprint of Elsevier,  |c 2015. 
264 4 |c ©2015 
300 |a 1 online zdroj. 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Mechanics of Solid Polymers: Theory and Computational Modeling; Copyright; Contents; Preface; Chapter 1: Introduction and Overview; 1.1 Introduction; 1.2 What Is a Polymer?; 1.3 Types of Polymers; 1.4 History of Polymers; 1.5 Polymer Manufacturing and Processing; 1.6 Polymer Mechanics; 1.7 Exercises; References; Chapter 2: Experimental Characterization Techniques; 2.1 Introduction; 2.2 Mechanical Testing for Material Model Calibration; 2.2.1 Uniaxial Compression Testing; 2.2.2 Uniaxial Tension Testing; 2.2.3 Plane Strain Tension; 2.2.4 Simple Shear Testing; 2.2.5 Impact Testing 
505 8 |a 2.2.6 Dynamic Mechanical Analysis2.2.7 Hardness and Indentation Testing; Rockwell Hardness Testing; Shore (Durometer) Testing; Barcol Hardness Testing; Nanoindentation; 2.2.8 Split-Hopkinson Pressure Bar Testing; 2.2.9 Bulk Modulus Testing; 2.2.10 Other Common Mechanical Testing Modes; 2.2.11 Testing for Failure Model Calibration; 2.3 Mechanical Testing for Material Model Validation; 2.3.1 Material Model Verification and Validation; 2.3.2 Small Punch Testing; 2.3.3 V-Notch Shear Testing; 2.4 Surface Characterization Techniques; 2.4.1 Optical Microscopy; 2.4.2 Scanning Electron Microscopy 
505 8 |a 2.4.3 Atomic Force Microscopy2.5 Volume Characterization Techniques; 2.5.1 Differential Scanning Calorimetry; 2.5.2 Transmission Electron Microscopy; 2.5.3 X-Ray Diffraction; Wide-Angle X-Ray Diffraction; Small-Angle X-Ray Diffraction; 2.5.4 Birefringence; 2.5.5 Swell Testing; 2.6 Chemical Characterization Techniques; 2.6.1 Fourier Transform Infrared Spectroscopy; 2.6.2 Energy Dispersive Spectroscopy; 2.6.3 Size-Exclusion Chromatography; 2.6.4 Thermogravimetric Analysis; 2.6.5 Raman Spectroscopy; 2.7 Exercises; References; Chapter 3: Finite Element Analysis as an Engineering Tool 
505 8 |a 3.1 Introduction3.1.1 Required Inputs for FEA; 3.2 Types of FEA; 3.3 Review of Modeling Techniques; 3.3.1 Deformation Modeling; 3.3.2 Failure Modeling; 3.4 Exercises; References; Chapter 4: Continuum Mechanics Foundations; 4.1 Introduction; 4.2 Classical Definitions of Stress and Strain; 4.2.1 Uniaxial Loading; 4.2.2 Multiaxial Loading; 4.3 Large Strain Kinematics; 4.4 Vector and Tensor Algebra; 4.4.1 Vector Operations; 4.4.2 The Dyadic Product; 4.4.3 Tensor Operations; 4.4.4 Derivatives of Scalar, Vector, and Tensor Fields; 4.4.5 Coordinate Transformations; 4.4.6 Invariants 
505 8 |a 4.5 Deformation Gradient4.5.1 Eigenvalue and Spectral Decompositions; 4.6 Strain, Stretch, and Rotation; 4.7 Rates of Deformation; 4.8 Stress Tensors; 4.8.1 Stress Invariants; 4.9 Balance Laws and Field Equations; 4.9.1 Conservation of Mass; 4.9.2 Balance of Linear Momentum; 4.9.3 Balance of Angular Momentum; 4.9.4 First Law of Thermodynamics; 4.9.5 Second Law of Thermodynamics; 4.10 Energy Balance and Stress Power; 4.11 Constitutive Equations; 4.11.1 Constitutive Equations for a Thermoelastic Material; 4.12 Observer Transformation; 4.12.1 Objective Rates; 4.13 Material Symmetry 
520 |a Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decade. 
590 |a Knovel Library  |b ACADEMIC - Plastics & Rubber 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty univerzity 
650 0 |a Polymers  |x Mechanical properties. 
650 0 |a Polymers  |x Testing. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Bergstrom, Jorgen S  |t Mechanics of Solid Polymers : Theory and Computational Modeling  |d Burlington : Elsevier Science,c2015  |z 9780323311502 
856 4 0 |u https://proxy.k.utb.cz/login?url=http://app.knovel.com/hotlink/toc/id:kpMSPTCM06/mechanics_of_solid_polymers__theory_and_computational_modeling  |y Plný text 
992 |a BK  |c KNOVEL 
999 |c 82647  |d 82647 
993 |x NEPOSILAT  |y EIZ