Optical design applying the fundamentals

Saved in:
Bibliographic Details
Main Author Riedl, Max J.
Corporate Author Society of Photo-optical Instrumentation Engineers
Format Electronic eBook
LanguageEnglish
Published Bellingham, Wash. : SPIE, ©2009.
SeriesSPIE tutorial texts ; TT84.
Subjects
Online AccessFull text
ISBN9780819478894
9780819477996
Physical Description1 online zdroj (xv, 170 pages) : illustrations.

Cover

Table of Contents:
  • Chapter 1. Law of refraction: the foundation of geometrical optics. 1.1. Introduction
  • 1.2. Fermat's principle
  • 1.3. Snell and the lens
  • 1.4. Graphical ray tracing
  • 1.5. Paraxial ray tracing
  • Chapter 2. Best shape for a thin lens. 2.1. Concept of thin lens
  • 2.2. Object at any position
  • 2.3. Object at infinity with added field of view
  • 2.4. Special case.
  • Chapter 3. Best shapes for multiple thin lenses, aspherizing, and the natural stop position. 3.1. Introduction
  • 3.2. Best shapes for minimum spherical aberration
  • 3.3. Aspherizing a singlet to eliminate spherical aberration
  • 3.4. Correcting coma and spherical aberration
  • 3.5. Natural stop position.
  • Chapter 4. Transition from a thin lens to a thick lens. 4.1. Introduction
  • 4.2. Adding a thickness and changing the second surface radius
  • 4.3. Change of spherical aberration with added thickness
  • Chapter 5. Achromats. 5.1. Introduction
  • 5.2. Thin achromat for the VIS spectrum, on-axis performance
  • 5.3. Smith's method of determining the surface shapes
  • 5.4. Achromat for the MWIR region
  • 5.5. Achromat for the LWIR region
  • 5.6. Diamond-turned hybrid.
  • Chapter 6. Systems with two separated components. 6.1. Introduction
  • 6.2. Dialyte : an air-spaced achromat
  • 6.3. Telephoto and reversed telephoto
  • Chapter 7. From an air-spaced doublet to a triplet. 7.1. Introduction
  • 7.2. Chromatic aberration
  • 7.3. Example, a conventional triplet
  • 7.4. Hybrid Petzval objective with a cold stop
  • Chapter 8. A hybrid for two wavelengths. 8.1. Introduction
  • 8.2. Basic lens shape for the long wavelength
  • 8.3. Required diffractive profile.
  • Chapter 9. Athermats. 9.1. Introduction
  • 9.2. Focus shift of a refractive element
  • 9.3. Athermalization with a doublet
  • 9.4. Focus shift of a diffractive lens
  • 9.5. Design examples
  • 9.6. Impact of housing material
  • 9.7. Athermat for the CO2 laser line
  • 9.8. Athermalized achromat
  • 9.9. Effect of quarter-wave limit without athermalization
  • Chapter 10. The Ball lens. 10.1. Introduction
  • 10.2. Spherical aberration
  • 10.3. Coma
  • 10.4. Astigmatism
  • Chapter 11. Seidel and the Pegel diagrams. 11.1. Introduction
  • 11.2. Triplet for the LWIR region
  • 11.3. Cassegrain version with a Maksutov-Mangin mirror combination for the LWIR region.
  • Chapter 12. The single-imaging mirror. 12.1. Introduction
  • 12.2. Spherical mirror
  • 12.3. Toroidal mirrors
  • 12.4. Examples
  • 12.5. Parabolic mirror
  • 12.6. Manufacturing remarks
  • 12.7. Mangin mirror
  • Chapter 13. Eight single optical elements as imaging objectives. 13.1. Introduction
  • 13.2. Diffraction limit
  • 13.3. Eight chosen configurations
  • 13.4. Shapes of the elements
  • 13.5. Aberrations
  • 13.6. Examples.
  • Chapter 14. A progression of performance with an increase in lens complexity. 14.1. Objectives
  • Chapter 15. Two-mirror systems as telescope and microscope objectives. 15.1. Introduction
  • 15.2. Basic Cassegrain telescope layout
  • 15.3. Cassegrain with two spherical mirrors
  • 15.4. Classic Cassegrain system
  • 15.5. Dall-Kirkham arrangement
  • 15.6. Ritchey-Chretien configuration
  • 15.7. Examples
  • 15.8. Cassegrain with Mangin as a secondary reflector
  • 15.9. Gregorian telescope
  • 15.10. Gregorian microscope objective
  • 15.11. Two Schwarzschild objectives
  • 15.12. Solid microscope objective.
  • Chapter 16. The plane-parallel plate. 16.1. Introduction
  • 16.2. Aberrations
  • 16.3. Shift of image
  • 16.4. Tilted plate
  • 16.5. Two tilted plates
  • Chapter 17. MTF, limits, and pixel sizes. 17.1. Introduction
  • 17.2. Optical modulation transfer function
  • 17.3. Focal plane array
  • Chapter 18. Details of a hybrid lens. 18.1. Introduction
  • 18.2. Hybrid
  • 18.3. Coordinates of the combined surface.
  • Chapter 19. From the Höegh meniscus to double anastigmats. 19.1. Introduction
  • 19.2. Höegh meniscus
  • 19.3. Hypergon lens
  • 19.4. Achromatic double lens
  • 19.5. Double anastigmats
  • Index.