Advanced optics using aspherical elements
Modern optical systems rely on leading-edge production technologies, especially when using aspherical optical elements. Due to the inherent complexity of aspheres, all efforts to push the technological limits are risky. Thus, to minimize risk, clear decisions based on a good understanding of technol...
Saved in:
Corporate Author: | |
---|---|
Other Authors: | , , |
Format: | eBook |
Language: | English |
Published: |
Bellingham, Wash. :
SPIE,
2008.
|
Series: | SPIE monograph ;
PM173. |
Subjects: | |
ISBN: | 9780819478405 9780819467492 9781615836994 |
Physical Description: | 1 online zdroj (xix, 414 pages) : illustrations. |
LEADER | 07060cam a2200541 a 4500 | ||
---|---|---|---|
001 | 82162 | ||
003 | CZ ZlUTB | ||
005 | 20240911221428.0 | ||
006 | m o d | ||
007 | cr |n | ||
008 | 090904s2008 waua fsb 001 0 eng d | ||
020 | |a 9780819478405 |q (ebook) | ||
020 | |z 9780819467492 | ||
020 | |a 9781615836994 |q (ebook) | ||
024 | 7 | |a 10.1117/3.741689 |2 doi | |
035 | |a (OCoLC)435804011 |z (OCoLC)508394530 |z (OCoLC)694874353 | ||
040 | |a CaBNvSL |b eng |e pn |c J2I |d OCLCQ |d CEF |d KIJ |d SPIES |d EBLCP |d E7B |d OCLCO |d OCLCQ |d OCLCA |d OCLCF |d DEBSZ |d OCLCQ |d OCLCO |d OCLCQ |d ZCU |d KNOVL |d YDXCP | ||
245 | 0 | 0 | |a Advanced optics using aspherical elements |h [elektronický zdroj] / |c Bernhard Braunecker, Rüdiger Hentschel, Hans J. Tiziani, editors. |
260 | |a Bellingham, Wash. : |b SPIE, |c 2008. | ||
300 | |a 1 online zdroj (xix, 414 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a počítač |b c |2 rdamedia | ||
338 | |a online zdroj |b cr |2 rdacarrier | ||
490 | 1 | |a SPIE Press monograph ; |v PM173 | |
500 | |a "SPIE digital library." | ||
500 | |a Includes index. | ||
505 | 0 | |a 1. Introduction -- Part I. 1.1. Motivation -- 1.2. Guideline -- 2. Basic considerations. 2.1. Preliminary remarks -- 2.2. Definition of aspherical optical elements -- 2.3. Drawing indications -- 2.4. Information exchange over aspherical elements -- 2.5. Study about surface errors -- 2.6. References -- 3. Applications. 3.1. Physical considerations -- 3.2. Image quality -- 3.3. Case study -- 3.4. Design drivers -- 3.5. Classifications -- 3.6. Technical challenges -- 3.7. Application spectrum -- 4. Materials of aspheres. 4.1. Glasses -- 4.2. Polymers -- 4.3. Glass ceramics -- 4.4. Single crystals and polycrystalline ceramics -- 5. Processing technologies. 5.1. Processing of aspheres: the historical approach -- 5.2. Overview processing -- 5.3. Process chain for processing aspheres -- 5.4. Hybrid technology -- 5.5. Molding -- 5.6. References -- 6. Metrology. 6.1. Measurement of optical system performance -- 6.2. Measurement of individual surfaces -- 6.3. Surface metrology -- 6.4. Measurement of surface roughness and waviness -- 6.5. Surface form measurement -- 6.6. Interferometric testing -- 6.7. Surface form measurement with a Shack-Hartmann wavefront sensor -- 6.8. Comparison of methods -- 6.9. References. | |
505 | 8 | |a 7. Coating technologies. 7.1. Introduction -- 7.2. Market and business -- 7.3. Deposition technologies, coating design, and monitoring -- 7.4. Multifunctional coatings on plastic optics -- 7.5. Actual topics -- 7.6. Nanocoatings -- 7.7. Summary -- 7.8. References -- 7.9. Further reading -- 8. Assembly technologies. 8.1. Relation between design and assembly -- 8.2. Review of different assembly strategies -- 8.3. Errors and tolerances -- 8.4. Compensators -- 8.5. Alignment of the optical axis of the aspherical components -- 8.6. Monolithic optics -- 8.7. Technical details -- 8.8. Reference -- 9. Future trends. 9.1. Introduction -- 9.2. Preliminary remarks -- 9.3. Applications -- 9.4. Materials -- 9.5. Processing technologies and metrology -- 9.6. Coating technologies -- 9.7. Assembly -- 9.8. Reference -- 10. Mathematical formulation. 10.1. Surfaces of second-order (quadrics) -- 10.2. Basic equation by ISO. | |
505 | 8 | |a Part II. Experts' contributions. 11. Applications. 11.1. Illuminations -- 11.2. Micro-optic cylindrical aspherical fast axis collimator for high power diode laser -- 11.3. Photo-optics -- 11.4. Aspheres for large format lenses -- 11.5. Aspherical projection lenses for UV- and eUV-lithography -- 11.6. Large-format lenses for aerial surveying -- 11.7. Mirror telescope for space communication -- 11.8. Free-form correction plate for telescopes -- 12. Materials. 12.1. Low-tg glass (nd <6, vd>) -- 12.2. Low-tg glass (1.6. <nd <9, <vd <) -- 12.3. Low-tg glass (1.8. <nd,> vd) -- 12.4. Uv-transmitting glasses -- 12.5. Fused silica -- 12.6. Optical polymers -- 12.7. Crystals for uv optics -- 12.8. Crystals for ir optics -- 12.9. Glass ceramics -- 12.10. Opto-ceramics -- 12.11. Glasses for ir optics -- 13. Processing technologies. 13.1. Zonal grinding process -- 13.2. Zonal polishing process -- 13.3. Magnetorheological finishing -- 13.4. Robotic polishing -- 13.5. Subaperture robotic polishing -- 13.6. Robot-assisted fluid jet polishing (FJP) -- 13.7. Ion beam polishing -- 13.8. Precision glass molding -- 13.9. Tools for precision glass molding -- 13.10. Injection molding of high-precision polymer optics -- 13.11. Aspherical microlenses manufactured by wafer-based technology. | |
505 | 8 | |a 14. Metrology. 14.1. Tactile profile measurement -- 14.2. Interferometry -- 14.3. Wavefront sensor (Shack-Hartmann) -- 14.4. Surface/microstructure inspection -- 15. Coating technologies. 15.1. Coating design -- 15.2. Electron-beam evaporation -- 15.3. Ion-assisted deposition (IAD) -- 15.4. Ion plating (IP) deposition -- 15.5. Advanced plasma source (APS) -- 15.5.6. Link -- 15.6. Magnetron sputtering -- 15.7. Ion beam sputtering -- 15.8. Plasma impulse chemical vapor deposition -- 16. Assembly. 16.1. Assembly of spherical lenses (consumer optics) -- 16.2. Assembly of spherical lenses (HQ optics) -- 16.3. Assembly of aspherical lenses -- 16.4. Micro-assembly trimo -- 16.5. CNC-machined monolithic optics -- 17. Editor and author biographies. 17.1. Volume editors -- 17.2. Contributing experts -- Acknowledgements -- Index. | |
520 | |a Modern optical systems rely on leading-edge production technologies, especially when using aspherical optical elements. Due to the inherent complexity of aspheres, all efforts to push the technological limits are risky. Thus, to minimize risk, clear decisions based on a good understanding of technology are indispensable. This compendium is written as an optical technology reference book for development and production engineers. With contributions from worldwide experts, this book aids in mitigating the risk in adopting new asphere production technologies. | ||
504 | |a Includes bibliographical references and index. | ||
590 | |a Knovel Library |b ACADEMIC - Optics & Photonics | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty univerzity | ||
650 | 0 | |a Optical instruments |x Design and construction. | |
650 | 0 | |a Aspherical lenses. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Tiziani, Hans J. | |
700 | 1 | |a Hentschel, Rüdiger, |d 1949- | |
700 | 1 | |a Braunecker, Bernhard. | |
710 | 2 | |a Society of Photo-optical Instrumentation Engineers. | |
776 | 0 | 8 | |i Print version: |t Advanced optics using aspherical elements. |d Bellingham, Wash. : SPIE, 2008 |z 0819467499 |w (DLC) 2007028838 |
830 | 0 | |a SPIE monograph ; |v PM173. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=http://app.knovel.com/hotlink/toc/id:kpAOUAE001/advanced_optics_using_aspherical_elements |y Plný text |
992 | |a BK |c KNOVEL | ||
999 | |c 82162 |d 82162 | ||
993 | |x NEPOSILAT |y EIZ |