Advanced optics using aspherical elements

Modern optical systems rely on leading-edge production technologies, especially when using aspherical optical elements. Due to the inherent complexity of aspheres, all efforts to push the technological limits are risky. Thus, to minimize risk, clear decisions based on a good understanding of technol...

Full description

Saved in:
Bibliographic Details
Corporate Author: Society of Photo-optical Instrumentation Engineers.
Other Authors: Tiziani, Hans J., Hentschel, Rüdiger, 1949-, Braunecker, Bernhard.
Format: eBook
Language: English
Published: Bellingham, Wash. : SPIE, 2008.
Series: SPIE monograph ; PM173.
Subjects:
ISBN: 9780819478405
9780819467492
9781615836994
Physical Description: 1 online zdroj (xix, 414 pages) : illustrations.

Cover

Table of contents

LEADER 07060cam a2200541 a 4500
001 82162
003 CZ ZlUTB
005 20240911221428.0
006 m o d
007 cr |n
008 090904s2008 waua fsb 001 0 eng d
020 |a 9780819478405  |q (ebook) 
020 |z 9780819467492 
020 |a 9781615836994  |q (ebook) 
024 7 |a 10.1117/3.741689  |2 doi 
035 |a (OCoLC)435804011  |z (OCoLC)508394530  |z (OCoLC)694874353 
040 |a CaBNvSL  |b eng  |e pn  |c J2I  |d OCLCQ  |d CEF  |d KIJ  |d SPIES  |d EBLCP  |d E7B  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCF  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d ZCU  |d KNOVL  |d YDXCP 
245 0 0 |a Advanced optics using aspherical elements  |h [elektronický zdroj] /  |c Bernhard Braunecker, Rüdiger Hentschel, Hans J. Tiziani, editors. 
260 |a Bellingham, Wash. :  |b SPIE,  |c 2008. 
300 |a 1 online zdroj (xix, 414 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a SPIE Press monograph ;  |v PM173 
500 |a "SPIE digital library." 
500 |a Includes index. 
505 0 |a 1. Introduction -- Part I. 1.1. Motivation -- 1.2. Guideline -- 2. Basic considerations. 2.1. Preliminary remarks -- 2.2. Definition of aspherical optical elements -- 2.3. Drawing indications -- 2.4. Information exchange over aspherical elements -- 2.5. Study about surface errors -- 2.6. References -- 3. Applications. 3.1. Physical considerations -- 3.2. Image quality -- 3.3. Case study -- 3.4. Design drivers -- 3.5. Classifications -- 3.6. Technical challenges -- 3.7. Application spectrum -- 4. Materials of aspheres. 4.1. Glasses -- 4.2. Polymers -- 4.3. Glass ceramics -- 4.4. Single crystals and polycrystalline ceramics -- 5. Processing technologies. 5.1. Processing of aspheres: the historical approach -- 5.2. Overview processing -- 5.3. Process chain for processing aspheres -- 5.4. Hybrid technology -- 5.5. Molding -- 5.6. References -- 6. Metrology. 6.1. Measurement of optical system performance -- 6.2. Measurement of individual surfaces -- 6.3. Surface metrology -- 6.4. Measurement of surface roughness and waviness -- 6.5. Surface form measurement -- 6.6. Interferometric testing -- 6.7. Surface form measurement with a Shack-Hartmann wavefront sensor -- 6.8. Comparison of methods -- 6.9. References. 
505 8 |a 7. Coating technologies. 7.1. Introduction -- 7.2. Market and business -- 7.3. Deposition technologies, coating design, and monitoring -- 7.4. Multifunctional coatings on plastic optics -- 7.5. Actual topics -- 7.6. Nanocoatings -- 7.7. Summary -- 7.8. References -- 7.9. Further reading -- 8. Assembly technologies. 8.1. Relation between design and assembly -- 8.2. Review of different assembly strategies -- 8.3. Errors and tolerances -- 8.4. Compensators -- 8.5. Alignment of the optical axis of the aspherical components -- 8.6. Monolithic optics -- 8.7. Technical details -- 8.8. Reference -- 9. Future trends. 9.1. Introduction -- 9.2. Preliminary remarks -- 9.3. Applications -- 9.4. Materials -- 9.5. Processing technologies and metrology -- 9.6. Coating technologies -- 9.7. Assembly -- 9.8. Reference -- 10. Mathematical formulation. 10.1. Surfaces of second-order (quadrics) -- 10.2. Basic equation by ISO. 
505 8 |a Part II. Experts' contributions. 11. Applications. 11.1. Illuminations -- 11.2. Micro-optic cylindrical aspherical fast axis collimator for high power diode laser -- 11.3. Photo-optics -- 11.4. Aspheres for large format lenses -- 11.5. Aspherical projection lenses for UV- and eUV-lithography -- 11.6. Large-format lenses for aerial surveying -- 11.7. Mirror telescope for space communication -- 11.8. Free-form correction plate for telescopes -- 12. Materials. 12.1. Low-tg glass (nd <6, vd>) -- 12.2. Low-tg glass (1.6. <nd <9, <vd <) -- 12.3. Low-tg glass (1.8. <nd,> vd) -- 12.4. Uv-transmitting glasses -- 12.5. Fused silica -- 12.6. Optical polymers -- 12.7. Crystals for uv optics -- 12.8. Crystals for ir optics -- 12.9. Glass ceramics -- 12.10. Opto-ceramics -- 12.11. Glasses for ir optics -- 13. Processing technologies. 13.1. Zonal grinding process -- 13.2. Zonal polishing process -- 13.3. Magnetorheological finishing -- 13.4. Robotic polishing -- 13.5. Subaperture robotic polishing -- 13.6. Robot-assisted fluid jet polishing (FJP) -- 13.7. Ion beam polishing -- 13.8. Precision glass molding -- 13.9. Tools for precision glass molding -- 13.10. Injection molding of high-precision polymer optics -- 13.11. Aspherical microlenses manufactured by wafer-based technology. 
505 8 |a 14. Metrology. 14.1. Tactile profile measurement -- 14.2. Interferometry -- 14.3. Wavefront sensor (Shack-Hartmann) -- 14.4. Surface/microstructure inspection -- 15. Coating technologies. 15.1. Coating design -- 15.2. Electron-beam evaporation -- 15.3. Ion-assisted deposition (IAD) -- 15.4. Ion plating (IP) deposition -- 15.5. Advanced plasma source (APS) -- 15.5.6. Link -- 15.6. Magnetron sputtering -- 15.7. Ion beam sputtering -- 15.8. Plasma impulse chemical vapor deposition -- 16. Assembly. 16.1. Assembly of spherical lenses (consumer optics) -- 16.2. Assembly of spherical lenses (HQ optics) -- 16.3. Assembly of aspherical lenses -- 16.4. Micro-assembly trimo -- 16.5. CNC-machined monolithic optics -- 17. Editor and author biographies. 17.1. Volume editors -- 17.2. Contributing experts -- Acknowledgements -- Index. 
520 |a Modern optical systems rely on leading-edge production technologies, especially when using aspherical optical elements. Due to the inherent complexity of aspheres, all efforts to push the technological limits are risky. Thus, to minimize risk, clear decisions based on a good understanding of technology are indispensable. This compendium is written as an optical technology reference book for development and production engineers. With contributions from worldwide experts, this book aids in mitigating the risk in adopting new asphere production technologies. 
504 |a Includes bibliographical references and index. 
590 |a Knovel Library  |b ACADEMIC - Optics & Photonics 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty univerzity 
650 0 |a Optical instruments  |x Design and construction. 
650 0 |a Aspherical lenses. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Tiziani, Hans J. 
700 1 |a Hentschel, Rüdiger,  |d 1949- 
700 1 |a Braunecker, Bernhard. 
710 2 |a Society of Photo-optical Instrumentation Engineers. 
776 0 8 |i Print version:  |t Advanced optics using aspherical elements.  |d Bellingham, Wash. : SPIE, 2008  |z 0819467499  |w (DLC) 2007028838 
830 0 |a SPIE monograph ;  |v PM173. 
856 4 0 |u https://proxy.k.utb.cz/login?url=http://app.knovel.com/hotlink/toc/id:kpAOUAE001/advanced_optics_using_aspherical_elements  |y Plný text 
992 |a BK  |c KNOVEL 
999 |c 82162  |d 82162 
993 |x NEPOSILAT  |y EIZ