Sensor and data fusion a tool for information assessment and decision making
This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sen...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Bellingham, Wash. :
SPIE Press,
©2004.
|
Series: | SPIE monograph ;
PM138. |
Subjects: | |
ISBN: | 9781615837243 9780819454355 9780819481115 |
Physical Description: | 1 online zdroj (xxii, 317 pages) : illustrations. |
LEADER | 07828cam a2200553 a 4500 | ||
---|---|---|---|
001 | 78976 | ||
003 | CZ ZlUTB | ||
005 | 20240911214711.0 | ||
006 | m o d | ||
007 | cr |n | ||
008 | 110117s2004 waua sb 001 0 eng d | ||
020 | |a 9781615837243 |q (ebook) | ||
020 | |a 9780819454355 | ||
020 | |a 9780819481115 |q (ebook) | ||
024 | 7 | |a 10.1117/3.563340 |2 doi | |
035 | |a (OCoLC)697185227 |z (OCoLC)606697056 |z (OCoLC)644978184 |z (OCoLC)645684625 |z (OCoLC)671980463 | ||
040 | |a KNOVL |b eng |e pn |c KNOVL |d CEF |d OCLCQ |d DEBSZ |d OCLCQ |d KNOVL |d ZCU |d KNOVL |d OCLCF |d J2I |d OCLCE |d SPIES |d EBLCP |d E7B |d OCLCO |d U5D |d OCLCQ |d CHVBK |d OCLCO |d KNOVL | ||
100 | 1 | |a Klein, Lawrence A. | |
245 | 1 | 0 | |a Sensor and data fusion |h [elektronický zdroj] : |b a tool for information assessment and decision making / |c Lawrence A. Klein. |
260 | |a Bellingham, Wash. : |b SPIE Press, |c ©2004. | ||
300 | |a 1 online zdroj (xxii, 317 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a počítač |b c |2 rdamedia | ||
338 | |a online zdroj |b cr |2 rdacarrier | ||
490 | 1 | |a SPIE Press monograph ; |v PM138 | |
504 | |a Includes bibliographical references and index. | ||
520 | |a This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data. | ||
505 | 0 | |a Chapter 1. Introduction -- Chapter 2. Multiple sensor system applications, benefits, and design considerations -- 2.1. Data fusion applications to multiple sensor systems -- 2.2. Selection of sensors -- 2.3. Benefits of multiple sensor systems -- 2.4. Influence of wavelength on atmospheric attenuation -- 2.5. Fog characterization -- 2.6. Effects of operating frequency on MMW sensor performance -- 2.7. Absorption of MMW energy in rain and fog -- 2.8. Backscatter of MMW energy from rain -- 2.9. Effects of operating wavelength on IR sensor performance -- 2.10. Visibility metrics -- 2.10.1. Visibility -- 2.10.2. Meteorological range -- 2.11. Attenuation of IR energy by rain -- 2.12. Extinction coefficient values (typical) -- 2.13. Summary of attributes of electromagnetic sensors -- 2.14. Atmospheric and sensor system computer simulation models -- 2.14.1. LOWTRAN attenuation model -- 2.14.2. FASCODE and MODTRAN attenuation models -- 2.14.3. EOSAEL sensor performance model -- 2.15. Summary -- References. | |
505 | 8 | |a Chapter 3. Data fusion algorithms and architectures -- 3.1. Definition of data fusion -- 3.2. Level 1 processing -- 3.3. Level 2, 3, and 4 processing -- 3.4. Data fusion processor functions -- 3.5. Definition of an architecture -- 3.6. Data fusion architectures -- 3.7. Sensor footprint registration and size considerations -- 3.8. Summary -- References. | |
505 | 8 | |a Chapter 4. Classical inference -- 4.1. Estimating the statistics of a population -- 4.2. Interpreting the confidence interval -- 4.3. Confidence interval for a population mean -- 4.4. Significance tests for hypotheses -- 4.5. The z-test for the population mean -- 4.6. Tests with fixed significance level -- 4.7. The t-test for a population mean -- 4.8. Caution in use of significance tests -- 4.9. Inference as a decision -- 4.10. Summary -- References. | |
505 | 8 | |a Chapter 5. Bayesian inference -- 5.1. Bayes' rule -- 5.2. Bayes' rule in terms of odds probability and likelihood ratio -- 5.3. Direct application of Bayes' rule to cancer screening test example -- 5.4. Comparison of Bayesian inference with classical inference -- 5.5. Application of Bayesian inference to fusing information from multiple sources -- 5.6. Combining multiple sensor information using the odds probability form of Bayes' rule -- 5.7. Recursive Bayesian updating -- 5.8. Posterior calculation using multivalued hypotheses and recursive updating -- 5.9. Enhancing underground mine detection with data from two noncommensurate sensors -- 5.10. Summary -- References. | |
505 | 8 | |a Chapter 6. Dempster-Shafer evidential theory -- 6.1. Overview of the process -- 6.2. Implementation of the method -- 6.3. Support, plausibility, and uncertainty interval -- 6.4. Dempster's rule for combination of multiple sensor data -- 6.5. Comparison of Dempster-Shafer with Bayesian decision theory -- 6.6 Probabilistic models for transformation of Dempster-Shafer belief functions for decision making -- 6.7. Summary -- References. | |
505 | 8 | |a Chapter 7. Artificial neural networks -- 7.1. Applications of artificial neural networks -- 7.2. Adaptive linear combiner -- 7.3. Linear classifiers -- 7.4. Capacity of linear classifiers -- 7.5. Nonlinear classifiers -- 7.6. Capacity of nonlinear classifiers -- 7.7. Supervised and unsupervised learning -- 7.8. Supervised learning rules -- 7.9. Generalization -- 7.10. Other artificial neural networks and processing techniques -- 7.11. Summary -- References. | |
505 | 8 | |a Chapter 8. Voting logic fusion -- 8.1. Sensor target reports -- 8.2. Sensor detection space -- 8.3. System detection probability -- 8.4. Application example without singleton sensor detection modes -- 8.5. Hardware implementation of voting logic sensor fusion -- 8.6. Application example with singleton sensor detection modes -- 8.7. Comparison of voting logic fusion with Dempster-Shafer evidential theory -- 8.8. Summary -- References. | |
505 | 8 | |a Chapter 9. Fuzzy logic and fuzzy neural networks -- 9.1. Conditions under which fuzzy logic provides an appropriate solution -- 9.2. Illustration of fuzzy logic in an automobile antilock system -- 9.3. Basic elements of a fuzzy system -- 9.4. Fuzzy logic processing -- 9.5. Fuzzy centroid calculation -- 9.6. Balancing an inverted pendulum with fuzzy logic control -- 9.7. Fuzzy logic applied to multitarget tracking -- 9.8. Fuzzy neural networks -- 9.9. Fusion of fuzzy-valued information from multiple -- sources -- 9.10. Summary -- References. | |
505 | 8 | |a Chapter 10. Passive data association techniques for unambiguous location of targets -- 10.1. Data fusion options -- 10.2. Received-signal fusion -- 10.3. Angle data fusion -- 10.4. Decentralized fusion architecture -- 10.5. Passive computation of range using tracks from a single sensor site -- 10.6. Summary -- References. | |
505 | 8 | |a Chapter 11. Retrospective comments -- Appendix A. Planck radiation law and radiative transfer -- A.1. Planck radiation law -- A.2. Radiative transfer theory -- References -- Appendix B. Voting fusion with nested confidence levels -- Index. | |
590 | |a Knovel Library |b ACADEMIC - Electronics & Semiconductors | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty univerzity | ||
650 | 0 | |a Signal processing |x Digital techniques. | |
650 | 0 | |a Multisensor data fusion. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
776 | 0 | 8 | |i Print version: |a Klein, Lawrence A. |t Sensor and data fusion. |d Bellingham, Wash. : SPIE Press, ©2004 |z 0819454354 |w (DLC) 2004003963 |w (OCoLC)54536689 |
830 | 0 | |a SPIE monograph ; |v PM138. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=http://app.knovel.com/hotlink/toc/id:kpSDFATIA1/sensor_and_data_fusion__a_tool_for_information_assessment_and_decision_making |y Plný text |
992 | |a BK |c KNOVEL | ||
999 | |c 78976 |d 78976 | ||
993 | |x NEPOSILAT |y EIZ |