Graphical models foundations of neural computation
Saved in:
| Other Authors | , |
|---|---|
| Format | eBook |
| Language | English |
| Published |
Cambridge, Mass. :
MIT Press,
c2001.
|
| Series | Computational neuroscience.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780262291200 |
| Physical Description | 1 online zdroj (xxiv, 421 p.) : ill. |
Cover
Table of Contents:
- 1 Probabilistic Independence Networks for Hidden Markov Probability Models / Padhraic Smyth, David Heckerman, Michael I. Jordan 1
- 2 Learning and Relearning in Boltzmann Machines / G.E. Hinton, T.J. Sejnowski 45
- 3 Learning in Boltzmann Trees / Lawrence Saul, Michael I. Jordan 77
- 4 Deterministic Boltzmann Learning Performs Steepest Descent in Weight-Space / Geoffrey E. Hinton 89
- 5 Attractor Dynamics in Feedforward Neural Networks / Lawrence K. Saul, Michael I. Jordan 97
- 6 Efficient Learning in Boltzmann Machines Using Linear Response Theory / H.J. Kappen, F.B. Rodriguez 121
- 7 Asymmetric Parallel Boltzmann Machines Are Belief Networks / Radford M. Neal 141
- 8 Variational Learning in Nonlinear Gaussian Belief Networks / Brendan J. Frey, Geoffrey E. Hinton 145
- 9 Mixtures of Probabilistic Principal Component Analyzers / Michael E. Tipping, Christopher M. Bishop 167
- 10 Independent Factor Analysis / H. Attias 207
- 11 Hierarchical Mixtures of Experts and the EM Algorithm / Michael I. Jordan, Robert A. Jacobs 257
- 12 Hidden Neural Networks / Anders Krogh, Soren Kamaric Riis 291
- 13 Variational Learning for Switching State-Space Models / Zoubin Ghahramani, Geoffrey E. Hinton 315
- 14 Nonlinear Time-Series Prediction with Missing and Noisy Data / Volker Tresp, Reimar Hofmann 349
- 15 Correctness of Local Probability Propagation in Graphical Models with Loops / Yair Weiss 367.