Graphical models foundations of neural computation

Saved in:
Bibliographic Details
Other Authors Jordan, Michael Irwin, 1956-, Sejnowski, Terrence J.
Format eBook
LanguageEnglish
Published Cambridge, Mass. : MIT Press, c2001.
SeriesComputational neuroscience.
Subjects
Online AccessFull text
ISBN9780262291200
Physical Description1 online zdroj (xxiv, 421 p.) : ill.

Cover

Table of Contents:
  • 1 Probabilistic Independence Networks for Hidden Markov Probability Models / Padhraic Smyth, David Heckerman, Michael I. Jordan 1
  • 2 Learning and Relearning in Boltzmann Machines / G.E. Hinton, T.J. Sejnowski 45
  • 3 Learning in Boltzmann Trees / Lawrence Saul, Michael I. Jordan 77
  • 4 Deterministic Boltzmann Learning Performs Steepest Descent in Weight-Space / Geoffrey E. Hinton 89
  • 5 Attractor Dynamics in Feedforward Neural Networks / Lawrence K. Saul, Michael I. Jordan 97
  • 6 Efficient Learning in Boltzmann Machines Using Linear Response Theory / H.J. Kappen, F.B. Rodriguez 121
  • 7 Asymmetric Parallel Boltzmann Machines Are Belief Networks / Radford M. Neal 141
  • 8 Variational Learning in Nonlinear Gaussian Belief Networks / Brendan J. Frey, Geoffrey E. Hinton 145
  • 9 Mixtures of Probabilistic Principal Component Analyzers / Michael E. Tipping, Christopher M. Bishop 167
  • 10 Independent Factor Analysis / H. Attias 207
  • 11 Hierarchical Mixtures of Experts and the EM Algorithm / Michael I. Jordan, Robert A. Jacobs 257
  • 12 Hidden Neural Networks / Anders Krogh, Soren Kamaric Riis 291
  • 13 Variational Learning for Switching State-Space Models / Zoubin Ghahramani, Geoffrey E. Hinton 315
  • 14 Nonlinear Time-Series Prediction with Missing and Noisy Data / Volker Tresp, Reimar Hofmann 349
  • 15 Correctness of Local Probability Propagation in Graphical Models with Loops / Yair Weiss 367.