Graphical models foundations of neural computation

Saved in:
Bibliographic Details
Other Authors Jordan, Michael Irwin, 1956-, Sejnowski, Terrence J.
Format eBook
LanguageEnglish
Published Cambridge, Mass. : MIT Press, c2001.
SeriesComputational neuroscience.
Subjects
Online AccessFull text
ISBN9780262291200
Physical Description1 online zdroj (xxiv, 421 p.) : ill.

Cover

LEADER 00000cam a2200000 a 4500
001 75041
003 CZ-ZlUTB
005 20251006170615.0
006 m d
007 cr un
008 130208s2001 maua sb 001 0 eng d
020 |a 9780262291200  |q (ebook) 
035 |a (OCoLC)827013364 
040 |a IEEEE  |c IEEEE  |d OCLCF  |d OCLCA 
245 0 0 |a Graphical models  |h [elektronický zdroj] :  |b foundations of neural computation /  |c edited by Michael I. Jordan and Terrence J. Sejnowski. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c c2001. 
300 |a 1 online zdroj (xxiv, 421 p.) :  |b ill. 
490 1 |a Computational neuroscience 
500 |a "A Bradford book." 
504 |a Includes bibliographical references and index. 
505 0 0 |g 1  |t Probabilistic Independence Networks for Hidden Markov Probability Models /  |r Padhraic Smyth, David Heckerman, Michael I. Jordan  |g 1 --  |g 2  |t Learning and Relearning in Boltzmann Machines /  |r G.E. Hinton, T.J. Sejnowski  |g 45 --  |g 3  |t Learning in Boltzmann Trees /  |r Lawrence Saul, Michael I. Jordan  |g 77 --  |g 4  |t Deterministic Boltzmann Learning Performs Steepest Descent in Weight-Space /  |r Geoffrey E. Hinton  |g 89 --  |g 5  |t Attractor Dynamics in Feedforward Neural Networks /  |r Lawrence K. Saul, Michael I. Jordan  |g 97 --  |g 6  |t Efficient Learning in Boltzmann Machines Using Linear Response Theory /  |r H.J. Kappen, F.B. Rodriguez  |g 121 --  |g 7  |t Asymmetric Parallel Boltzmann Machines Are Belief Networks /  |r Radford M. Neal  |g 141 --  |g 8  |t Variational Learning in Nonlinear Gaussian Belief Networks /  |r Brendan J. Frey, Geoffrey E. Hinton  |g 145 --  |g 9  |t Mixtures of Probabilistic Principal Component Analyzers /  |r Michael E. Tipping, Christopher M. Bishop  |g 167 --  |g 10  |t Independent Factor Analysis /  |r H. Attias  |g 207 --  |g 11  |t Hierarchical Mixtures of Experts and the EM Algorithm /  |r Michael I. Jordan, Robert A. Jacobs  |g 257 --  |g 12  |t Hidden Neural Networks /  |r Anders Krogh, Soren Kamaric Riis  |g 291 --  |g 13  |t Variational Learning for Switching State-Space Models /  |r Zoubin Ghahramani, Geoffrey E. Hinton  |g 315 --  |g 14  |t Nonlinear Time-Series Prediction with Missing and Noisy Data /  |r Volker Tresp, Reimar Hofmann  |g 349 --  |g 15  |t Correctness of Local Probability Propagation in Graphical Models with Loops /  |r Yair Weiss  |g 367. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty univerzity 
650 0 |a Neural networks (Computer science) 
650 0 |a Computer graphics. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Jordan, Michael Irwin,  |d 1956- 
700 1 |a Sejnowski, Terrence J.  |q (Terrence Joseph) 
776 0 8 |i Print version:  |t Graphical models.  |d Cambridge, Mass. : MIT Press, c2001  |z 0262600420  |w (DLC) 2001030212  |w (OCoLC)45917305 
830 0 |a Computational neuroscience. 
856 4 0 |u https://proxy.k.utb.cz/login?url=http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6276852 
992 |a BK  |c EBOOK-TN  |c MITPRESS 
999 |c 75041  |d 75041 
993 |x NEPOSILAT  |y EIZ