Boosting foundations and algorithms

Saved in:
Bibliographic Details
Main Author Schapire, Robert E.
Other Authors Freund, Yoav
Format eBook
LanguageEnglish
Published Cambridge, MA : MIT Press, c2012.
SeriesAdaptive computation and machine learning.
Subjects
Online AccessFull text
ISBN9780262301183
Physical Description1 online zdroj (xv, 526 p.) : ill.

Cover

Table of Contents:
  • Foundations of machine learning
  • Using AdaBoost to minimize training error
  • Direct bounds on the generalization error
  • The margins explanation for boosting's effectiveness
  • Game theory, online learning, and boosting
  • Loss minimization and generalizations of boosting
  • Boosting, convex optimization, and information geometry
  • Using confidence-rated weak predictions
  • Multiclass classification problems
  • Learning to rank
  • Attaining the best possible accuracy
  • Optimally efficient boosting
  • Boosting in continuous time.