Semi-supervised learning
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research.
Saved in:
| Other Authors | , , |
|---|---|
| Format | eBook |
| Language | English |
| Published |
Cambridge, Mass. :
MIT Press,
c2006.
|
| Series | Adaptive computation and machine learning.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780262255899 |
| Physical Description | 1 online zdroj (x, 508 p.) : ill. |
Cover
| Summary: | A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research. |
|---|---|
| Bibliography: | Includes bibliographical references (p. [479]-497). |
| ISBN: | 9780262255899 |
| Access: | Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty univerzity |
| Physical Description: | 1 online zdroj (x, 508 p.) : ill. |