Nanoelectronics : physics, technology and applications

Saved in:
Bibliographic Details
Main Authors Parekh, Rutu (Author), Dhavse, Rasika (Author)
Format Electronic eBook
LanguageEnglish
Published Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2023]
SeriesIOP ebooks. 2023 collection.
Subjects
Online AccessFull text
ISBN9780750348119
9780750348102
9780750348096
9780750348126
Physical Description1 online zdroj : ilustrace.

Cover

Table of Contents:
  • 1. Physical and technological limitations of nano-CMOS devices to the end of the roadmap and beyond
  • 1.1. MOSFETs and their scaling
  • 1.2. Limitations and showstoppers arising from CMOS scaling, and technological options for MOSFET optimisation
  • 2. Introduction and overview of nanoelectronics
  • 2.1. Introduction
  • 2.2. Market requirements for nanoelectronics
  • 2.3. Nanofabrication
  • 3. Introduction to the quantum theory of solids
  • 3.1. Classical particles, classical waves and quantum particles
  • 3.2. Quantum particles and principles of quantum mechanics
  • 3.3. Quantum tunnelling
  • 3.4. Quantum confinement
  • 3.5. Schrodinger's wave equation--meaning, boundary conditions and applications
  • 3.6. Significance of the band theory of solids
  • 3.7. Factors affecting the energy band gap
  • 3.8. Fermi statistics and electrical conduction in solids
  • 4. Emerging research devices for nanocircuits
  • 4.1. Channel-replacement devices
  • 4.2. Graphene
  • 4.3. Fullerenes and carbon nanotubes
  • 4.4. Tunnel field-effect transistor
  • 4.5. Nanowire field-effect transistors
  • 4.6. P-type III-V channel-replacement devices
  • 4.7. N-type Ge channel-replacement devices
  • 4.8. Potential evaluation--extending MOSFETs to the end of the roadmap
  • 4.9. Quantum confinement and associated devices
  • 4.10. Quantum-mechanical tunnelling and Coulomb blockade in a single-electron transistor
  • 4.11. Structure and working principle of single-electron transistors
  • 4.12. Other quantum structures and their applications
  • 4.13. Nanoelectromechanical systems
  • 4.14. Atomic switches
  • 4.15. Mott FETs
  • 4.16. Negative-capacitance FETs
  • 4.17. Alternative information-processing devices
  • 5. Emerging memory devices
  • 5.1. Memristors
  • 5.2. Magnetoresistive effect for memory applications
  • 5.3. Magnetoresistive RAM
  • 5.4. Spin-transfer torque magnetic random access memory
  • 5.5. All-spin logic
  • 5.6. Phase-change memory
  • 5.7. Resistive random access memory
  • 5.8. Ferroelectric RAM
  • 5.9. Mott memory
  • 5.10. Carbon-based emerging memory devices
  • 5.11. Molecular memory
  • 5.12. Macromolecular memory
  • 5.13. Racetrack memory
  • 5.14. Comparison of memory types
  • 6. Modelling and simulation
  • 6.1. Technology modelling and simulation
  • 6.2. Circuit simulators
  • 6.3. Monte Carlo simulation
  • 6.4. Microelectromechanical/nanoelectromechanical device simulators
  • 6.5. System-level design
  • 7. Nanofabrication
  • 7.1. Microfabrication techniques
  • 7.2. Limits of photolithography and advanced lithographic processes
  • 7.3. Self-assembly processes
  • 7.4. Nano measurement and characterisation tools
  • 7.5. Thin-film technology and synthesis
  • 7.6. Microelectromechanical, microoptoelectromechanical systems and nanoelectromechanical technologies
  • 7.7. Process integration
  • 8. Emerging nanoelectronic architectures
  • 8.1. Storage class memory
  • 8.2. Morphic computing : the architectures that can learn
  • 9. Nanosensors and transducers
  • 9.1. Introduction to sensors science and technology
  • 9.2. Nanosensors and transducers in food industry, healthcare and defence
  • 9.3. Metal nanoparticles and quantum-dots-based sensors
  • 9.4. Carbon-nanotubes-based sensors
  • 9.5. Electronic skin based on nanotechnology
  • 9.6. Microelectromechanical/nanoelectromechanical sensors.