Nanoelectronics : physics, technology and applications
Saved in:
| Main Authors | , |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
IOP Publishing,
[2023]
|
| Series | IOP ebooks. 2023 collection.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780750348119 9780750348102 9780750348096 9780750348126 |
| Physical Description | 1 online zdroj : ilustrace. |
Cover
Table of Contents:
- 1. Physical and technological limitations of nano-CMOS devices to the end of the roadmap and beyond
- 1.1. MOSFETs and their scaling
- 1.2. Limitations and showstoppers arising from CMOS scaling, and technological options for MOSFET optimisation
- 2. Introduction and overview of nanoelectronics
- 2.1. Introduction
- 2.2. Market requirements for nanoelectronics
- 2.3. Nanofabrication
- 3. Introduction to the quantum theory of solids
- 3.1. Classical particles, classical waves and quantum particles
- 3.2. Quantum particles and principles of quantum mechanics
- 3.3. Quantum tunnelling
- 3.4. Quantum confinement
- 3.5. Schrodinger's wave equation--meaning, boundary conditions and applications
- 3.6. Significance of the band theory of solids
- 3.7. Factors affecting the energy band gap
- 3.8. Fermi statistics and electrical conduction in solids
- 4. Emerging research devices for nanocircuits
- 4.1. Channel-replacement devices
- 4.2. Graphene
- 4.3. Fullerenes and carbon nanotubes
- 4.4. Tunnel field-effect transistor
- 4.5. Nanowire field-effect transistors
- 4.6. P-type III-V channel-replacement devices
- 4.7. N-type Ge channel-replacement devices
- 4.8. Potential evaluation--extending MOSFETs to the end of the roadmap
- 4.9. Quantum confinement and associated devices
- 4.10. Quantum-mechanical tunnelling and Coulomb blockade in a single-electron transistor
- 4.11. Structure and working principle of single-electron transistors
- 4.12. Other quantum structures and their applications
- 4.13. Nanoelectromechanical systems
- 4.14. Atomic switches
- 4.15. Mott FETs
- 4.16. Negative-capacitance FETs
- 4.17. Alternative information-processing devices
- 5. Emerging memory devices
- 5.1. Memristors
- 5.2. Magnetoresistive effect for memory applications
- 5.3. Magnetoresistive RAM
- 5.4. Spin-transfer torque magnetic random access memory
- 5.5. All-spin logic
- 5.6. Phase-change memory
- 5.7. Resistive random access memory
- 5.8. Ferroelectric RAM
- 5.9. Mott memory
- 5.10. Carbon-based emerging memory devices
- 5.11. Molecular memory
- 5.12. Macromolecular memory
- 5.13. Racetrack memory
- 5.14. Comparison of memory types
- 6. Modelling and simulation
- 6.1. Technology modelling and simulation
- 6.2. Circuit simulators
- 6.3. Monte Carlo simulation
- 6.4. Microelectromechanical/nanoelectromechanical device simulators
- 6.5. System-level design
- 7. Nanofabrication
- 7.1. Microfabrication techniques
- 7.2. Limits of photolithography and advanced lithographic processes
- 7.3. Self-assembly processes
- 7.4. Nano measurement and characterisation tools
- 7.5. Thin-film technology and synthesis
- 7.6. Microelectromechanical, microoptoelectromechanical systems and nanoelectromechanical technologies
- 7.7. Process integration
- 8. Emerging nanoelectronic architectures
- 8.1. Storage class memory
- 8.2. Morphic computing : the architectures that can learn
- 9. Nanosensors and transducers
- 9.1. Introduction to sensors science and technology
- 9.2. Nanosensors and transducers in food industry, healthcare and defence
- 9.3. Metal nanoparticles and quantum-dots-based sensors
- 9.4. Carbon-nanotubes-based sensors
- 9.5. Electronic skin based on nanotechnology
- 9.6. Microelectromechanical/nanoelectromechanical sensors.