Applied spatial statistics and econometrics : data analysis in R

"This textbook is a comprehensive introduction to applied spatial data analysis, using R. Each chapter walks the reader through a different method, explaining how to interpret the results and what conclusions can be drawn. The author team showcase key topics including unsupervised learning, cau...

Full description

Saved in:
Bibliographic Details
Other Authors Kopczewska, Katarzyna (Editor)
Format Electronic eBook
LanguageEnglish
Published Milton Park, Abingdon, Oxon ; New York, NY : Routledge, [2020]
SeriesRoutledge advanced texts in economics and finance
Subjects
Online AccessFull text
ISBN9781003033219
9781000079784
9781000079760
9781000079746
9780367470777
9780367470760
Physical Description1 online zdroj.

Cover

Table of Contents:
  • <P><STRONG>Introduction</STRONG></P><P><STRONG>Statement by the American Statistical Association on statistical significance and p-value used in the book</STRONG></P><P><STRONG>Acknowledgments</STRONG></P><P>Chapter 1: Basic operations in the R software <STRONG>(Mateusz Kopyt)<BR></STRONG>1.1 About the R software<BR>1.2. The R software interface<BR>1.2.1 R Commander<BR>1.2.2. RStudio<BR>1.3 Using help<BR>1.4 Additional packages<BR>1.5 R Language
  • basic features<BR>1.6 Defining and loading data<BR>1.7 Basic operations on objects<BR>1.8 Basic statistics of the data set<BR>1.9 Basic visualizations<BR>1.9.1 Scatterplot and line chart<BR>1.9.2 Column chart<BR>1.9.3 Pie chart<BR>1.9.4 Boxplot<BR>1.10 Regression in examples</P><P>Chapter 2: Spatial data, R classes and basic graphics <STRONG>(Katarzyna Kopczewska)</STRONG><BR>2.1 Loading and basic operations on spatial vector data<BR>2.2. Creating, checking and converting spatial classes<BR>2.3 Selected color palettes<BR>2.4 Basic contour maps with a color layer<BR>Scheme 1
  • with colorRampPalette() from the grDevices:: package<BR>Scheme 2
  • with choropleth() from the GISTools:: package<BR>Scheme 3
  • with findInterval() from the base:: package<BR>Scheme 4
  • with findColours() from the classInt:: package<BR>Scheme 5
  • with spplot() from the sp:: package<BR>2.5 Basic operations and graphs for point data<BR>Scheme 1
  • with points() from the graphics:: package
  • locations only<BR>Scheme 2
  • with spplot() from the sp:: package
  • locations and values<BR>Scheme 3
  • with findInterval() from the base:: package
  • locations, values, different size of symbols<BR>2.6 Basic operations on rasters<BR>2.7 Basic operations on grids<BR>2.8 Spatial geometries</P><P>Chapter 3: Spatial data from the Web API <STRONG>(Mateusz Kopyt, Katarzyna Kopczewska)</STRONG><BR>3.1 What is the API?<BR>3.2. Creating contextual maps with use of API<BR>3.3 Ways to visualize spatial data
  • maps for point and regional data<BR>Scheme 1
  • with bubbleMap() from the RgoogleMaps:: package<BR>Scheme 2
  • with ggmap() from the ggmap:: package<BR>Scheme 3
  • with PlotOnStaticMap() from the RgoogleMap:: package<BR>Scheme 4
  • with RGoogleMaps:: GetMap() and conversion of staticMap into a raster<BR>3.4 Spatial data in vector format
  • example of the OSM database<BR>3.5 Access to non-spatial internet databases and resources via API
  • examples<BR>3.6 Geo-coding of data</P><P>Chapter 4: Spatial weight matrices, distance measurement, tessellation, spatial statistics <STRONG>(Katarzyna Kopczewska, Maria Kubara)<BR></STRONG>4.1. Introduction to spatial data analysis<BR>4.2 Spatial weights matrix<BR>4.2.1 General framework for creating spatial weights matrices<BR>4.2.2 Selection of a neighborhood matrix<BR>4.2.3 Neighborhood matrices according to the contiguity criterion<BR>4.2.4 Matrix of k nearest neighbors (knn)<BR>4.2.5 Matrix based on distance criterion (neighbours in a radius of d km)<BR>4.2.6 Inverse distance matrix<BR>4.2.7 Summarizing and editing of spatial weights matrix<BR>4.2.8 Spatial lags and higher order neighborhood<BR>4.2.9 Creating weights matrix based on group membership<BR>4.3 Distance measurement and spatial aggregation<BR>4.4 Tessellation<BR>4.5 Spatial statistics<BR>4.5.1 Global statistics<BR>4.5.1.1 Global Moran I statistics<BR>4.5.1.2 Global Geary C statistics<BR>4.5.1.3 Join-count statistics<BR>4.5.2. Local spatial autocorrelation statistics<BR>4.5.2.1 Local Moran I statistics (LISA)<BR>4.5.2.2 Local Geary C statistics<BR>4.5.2.3 Local Getis-Ord Gi statistics<BR>4.5.2.4. Local spatial heteroscedasticity (LOSH)<BR>4.6 Spatial cross-correlations for two variables<BR>4.7 Correlogram</P><P>Chapter 5: Applied spatial econometrics <STRONG>(Katarzyna Kopczewska)</STRONG><BR>5.1 Value added from spatial modelling and classes of models<BR>5.2 Basic cross-sectional models<BR>5.2.1 Estimation<BR>5.2.2 Quality assessment of spatial models<BR>5.2.2.1 Information criteria and pseudo R2 in assessing model fit<BR>5.2.2.2 Test for heteroskedasticity of model residuals<BR>5.2.2.3 Residual autocorrelation tests<BR>5.2.2.4 LM tests for model type selection<BR>5.2.2.5 LR and Wald tests for model restrictions<BR>5.2.3 Selection of spatial weight matrix and modelling of diffusion strength<BR>5.2.4 Forecasts in spatial models<BR>5.2.5 Causality<BR>5.3 Selected specifications of cross-sectional spatial models<BR>5.3.1 Uni-directional spatial interaction models<BR>5.3.2 Cumulative models<BR>5.3.3 Bootstrapped models for big data<BR>5.3.4 Models for grid data<BR>5.4 Spatial panel models</P><P>Chapter 6: Geographically Weighted Regression
  • modelling spatial heterogeneity <STRONG>(Piotr Ćwiakowski)</STRONG><BR>6.1 Geographically weighted regression<BR>6.2 Basic estimation of GWR model<BR> 6.2.1 Estimation of the reference OLS model<BR>6.2.2 Choosing the optimal bandwidth for a dataset<BR>6.2.3 Local geographically weighted statistics<BR>6.2.4 Geographically weighted regression estimation<BR>6.2.5 Basic diagnostic tests of the GWR model<BR>6.2.6 Testing the significance of parameters in GWR<BR>6.2.7 Selection of the optimal functional form of the model<BR>6.2.8 GWR with heteroskedastic random error<BR>6.3 The problem of collinearity in GWR models<BR>6.3.1 Diagnosing collinearity in GWR<BR>6.4. Mixed GWR<BR>6.5. Robust regression in the GWR model<BR>6.6. Geographically and Temporally Weighted Regression (GTWR)</P><P>Chapter 7: Unattended spatial learning <STRONG>(Katarzyna Kopczewska)</STRONG><BR>7.1 Clustering of spatial points with k-means, PAM and CLARA algorithms<BR>7.2 Clustering with the DBSCAN algorithm<BR>7.3 Spatial Principal Component Analysis<BR>7.4 Spatial Drift<BR>7.5 Spatial hierarchical clustering<BR>7.6 Spatial oblique decision tree</P><P>Chapter 8: Spatial point pattern analysis and spatial interpolation <STRONG>(Kateryna Zabarina)</STRONG><BR>8.1. Introduction and main definitions<BR>8.1.1. Dataset<BR>8.1.2. Creation of window and point pattern<BR>8.1.3. Marks<BR>8.1.4. Covariates<BR>8.1.5. Duplicated points<BR>8.1.6. Projection and rescaling<BR>8.2. Intensity-based analysis of unmarked point pattern<BR>8.2.1. Quadrat test<BR>8.2.2. Tests with spatial covariates<BR>8.3. Distance-based analysis of the unmarked point pattern<BR>8.3.1. Distance-based measures<BR>8.3.1.1. Ripley's K function<BR>8.3.1.2. F function<BR>8.3.1.3. G function<BR>8.3.1.4. J function<BR>8.3.1.5. Distance-based CSR tests<BR>8.3.2. Monte-Carlo tests<BR>8.3.3. Envelopes<BR>8.3.4. Non-graphical tests<BR>8.4. Selection and estimation of a proper model for unmarked point pattern<BR>8.4.1. Theoretical note<BR>8.4.2. Choice of parameters<BR>8.4.3. Estimation and results<BR>8.4.4. Conclusions<BR>8.5. Intensity-based analysis of marked point pattern<BR>8.5.1. Segregation test<BR>8.6. Correlation and spacing analysis of the marked point pattern<BR>8.6.1. Analysis under assumption of stationarity<BR>8.6.1.1. K function variations for multitype pattern<BR>8.6.1.2. Mark connection function<BR>8.6.1.3. Analysis of within and between types of dependence<BR>8.6.1.4. Randomisation test of components' independence<BR>8.6.2. Analysis under assumption of non-stationarity<BR>8.6.2.1. Inhomogeneous K function variations for multitype pattern<BR>8.7. Selection and estimation of a proper model for unmarked point pattern<BR>8.7.1. Theoretical note<BR>8.7.2. Choice of optimal radius<BR>8.7.3. Within-industry interaction radius <BR>8.7.4. Between-industry interaction radius<BR>8.7.5. Estimation and results<BR>8.7.6. Model with no between-industry interaction<BR>8.7.7. Model with all possible interactions<BR>8.8. Spatial interpolation methods
  • kriging <BR>8.8.1. Basic definitions <BR>8.8.2. Description of chosen kriging methods <BR>8.8.3. Data preparation for the study<BR>8.8.4. Estimation and discussion</P><P>Chapter 9: Spatial Sampling and Bootstrap <STRONG>(Katarzyna Kopczewska, Piotr Ćwiakowski)</STRONG><BR>9.1 Spatial point data
  • object classes and spatial aggregation<BR>9.2 Spatial sampling
  • randomization / generation of new points on the surface<BR>9.3 Spatial sampling
  • sampling of sub-samples from existing points<BR>9.3.1 Simple sampling<BR>9.3.2 The options of the sperrorest:: package<BR>9.3.3 Sampling points from areas determined by the k-means algorithm
  • block bootstrap<BR>9.3.4 Sampling points from moving blocks (moving block bootstrap, MBB)<BR>9.4.