Functionalized Nanofibers : Synthesis and Industrial Applications
Functionalized Nanofibers: Synthesis and Industrial Applications presents the latest advances in the fabrication, design, processing, and properties of functionalized nanofibers for a range of advanced applications. Sections introduce fabrication, mechanisms, and design of functionalized nanofibers,...
Saved in:
| Other Authors | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
Amsterdam, Netherlands :
Elsevier Inc.,
[2023]
|
| Series | Micro & nano technologies
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780323994620 9780323994613 |
| Physical Description | 1 online zdroj (984 stran) |
Cover
Table of Contents:
- Intro
- Functionalized Nanofibers: Synthesis and Industrial Applications
- Copyright
- Contents
- Contributors
- Chapter 1: Electrospinning and nonelectrospinning techniques for the fabrication of nanofibers: Mechanisms, process param ...
- 1. Introduction
- 2. Fabrication techniques of NFs
- 2.1. Electrospinning techniques: Fundamental mechanisms and experimental setup
- 2.1.1. Melt electrospinning
- 2.1.2. Coaxial and triaxial electrospinning
- 2.1.3. Electrospraying
- 2.1.4. Solution blowing
- 2.1.5. Emulsion electrospinning
- 2.1.6. Multineedle electrospinning
- 2.1.7. Needleless electrospinning
- 3. Parameters influencing the electrospinning process
- 3.1. Process parameters
- 3.1.1. Applied voltage
- 3.1.2. Needle diameter
- 3.1.3. Solution flow rate
- 3.1.4. Collector to tip distance
- 3.2. Solution parameter
- 3.2.1. Concentration/solution viscosity
- 3.2.2. Conductivity and surface tension
- 3.2.3. Solvent selection
- 3.3. Ambient conditions
- 3.3.1. Humidity
- 4. Nonelectrospinning techniques of NF fabrication
- 4.1. Atomic layer deposition
- 4.2. Vapor deposition technique
- 4.3. Mechanical fabrication technique
- 4.4. Template-assisted synthesis
- 4.5. Hydrothermal method
- 5. Conclusions and future perspective
- References
- Chapter 2: Multistructural nanofiber designs: Processing, properties, and applications of random, aligned, porous, core s ...
- 1. Introduction
- 2. Electrospinning process
- 2.1. Dope properties
- 2.2. Process conditions
- 2.3. Environmental conditions
- 3. Diverse morphologies of electrospun polymer nanofibers
- 3.1. Primary structure
- 3.2. Random nanofibers
- 3.3. Aligned nanofibers
- 3.4. Core/shell nanofiber structures
- 3.5. Hollow nanofiber structure
- 3.6. Secondary architecture
- 4. Application of different morphological nanofibers by electrospinning.
- 5. Summary and future perspective
- References
- Chapter 3: Surface functionalization techniques and characterization methods of electrospun nanofibers
- 1. Introduction
- 2. Principle of electrospinning and nanofiber synthesis
- 2.1. Optimization of experimental parameters
- 3. Surface functionalization techniques for electrospun nanofibers
- 3.1. Chemical methods
- 3.2. Wet chemical functionalization
- 3.2.1. Aminolysis
- 3.2.2. Hydrolysis
- 3.3. Covalent grafting
- 3.4. Plasma treatment
- 3.5. Physical adsorption method
- 4. Characterization methods
- 4.1. Scanning electron microscope analysis
- 4.2. Transmission electron microscope analysis
- 4.3. Atomic force microscope analysis
- 4.4. X-ray diffraction analysis
- 4.5. Fourier transform infrared analysis
- 4.6. Raman analysis
- 4.7. Surface area analysis
- 4.8. Pore size distribution and porosity
- 4.8.1. Mercury intrusion porosimetry
- 4.8.2. Liquid extrusion porosimetry
- 4.8.3. Nuclear magnetic resonance
- 4.9. Vibrating sample magnetometer analysis
- 4.10. Mechanical property analysis
- 4.10.1. Universal testing instrument
- 4.10.2. Dynamic mechanical analysis
- 4.11. Contact angle analysis
- 4.12. X-ray photoelectron spectroscopy analysis
- 4.13. Thermal analysis
- 5. Conclusions and future prospects
- Acknowledgments
- References
- Chapter 4: Application of low-temperature plasma surface modification technology in functionalized nanofibers
- 1. Introduction
- 2. Plasma technology for nanofiber surface modification
- 2.1. Plasma generation and sources
- 2.2. Mechanism of plasma interactions on the fiber surface
- 2.2.1. Functionalization
- 2.2.2. Etching
- 2.2.3. Cleaning
- 2.2.4. Polymerization
- 3. Different nanofiber treatment by plasma
- 3.1. Carbon fibers
- 3.1.1. Fiber-matrix interface bonding enhancement by plasma treatment.
- 3.1.2. Carbon fiber surface modification for better battery performance
- 3.2. Metal oxide nanofibers
- 3.3. Polymer nanofibers
- 3.3.1. Biocompatibility
- 3.3.2. Antibiosis
- 4. Conclusions
- References
- Chapter 5: Preparation and functional applications of electrospun yarns
- 1. Introduction
- 2. Preparation of electrospinning nanofiber yarns
- 2.1. The electric field-assisted yarn preparation
- 2.2. Fiber film twisting
- 2.3. Liquid vortex twisting
- 2.4. Rotational twisting
- 2.5. Air-assisted yarn preparation
- 2.6. Other yarn preparation methods
- 3. Preparation of composite nanofiber yarns
- 3.1. Preparation of core-spun yarn
- 3.2. Preparation of ultralow proportion nanofiber composite yarn
- 3.3. Preparation of multicomponent nanofiber composite yarns
- 4. Influencing factors and reinforcement methods of nanofiber yarn mechanical properties
- 5. Application of nanofiber yarn
- 5.1. Flexible wearable electronic devices
- 5.1.1. Flexible stress-strain sensor
- 5.1.2. Flexible supercapacitors
- 5.1.3. Flexible gas sensor
- 5.2. Biomedical textiles
- 5.2.1. Surgical sutures
- 5.2.2. Tissue engineering scaffolds
- 5.2.3. Antibacterial yarn
- 5.3. Other functional textiles
- 5.3.1. Moisture-conducting yarn
- 5.3.2. Other functional yarns
- 6. Conclusion
- Acknowledgments
- References
- Chapter 6: Functionalized nanofibers for tissue engineering and regenerative medicine
- 1. Nanotechnology definition
- 2. Synthesis of nanofibers
- 2.1. Phase separation for nanofiber formation
- 2.2. Self-assembly technique for nanofiber production
- 2.3. Electrospinning technique for nanofiber formation
- 2.3.1. Properties of nanofibers
- 3. Nanofiber formation
- 3.1. Natural biopolymers used for nanofiber formation
- 3.1.1. Functionalization of cellulose and modified cellulose nanofibers.
- 3.1.2. Functionalization of sodium alginate nanofibers
- 3.1.3. Functionalized nanofibers based on chitin and chitosan biopolymers
- 3.1.4. Functionalization of curdlan nanofibers
- 3.1.5. Electrospinning of starch and modified starches
- 3.2. Synthetic polymers
- 3.2.1. Functionalization of poly(vinyl alcohol) nanofibers
- 3.2.2. Functionalization of poly(vinyl pyrrolidone) nanofibers
- 3.2.3. Functionalization of polyurethane nanofibers
- 3.2.4. Functionalization of polycaprolactone (PCL) nanofibers
- 4. Applications of functionalized nanofibers
- 4.1. Musculoskeletal tissue engineering
- 4.2. Nanofibers for bone tissue engineering
- 4.3. Nanofibers for cartilage tissue engineering
- 4.4. Nanofibers for ligament tissue engineering
- 4.5. Nanofibers for skin tissue engineering
- 4.6. Nanofibers for blood vessel tissue engineering
- 4.7. Nanofibers for drug delivery
- 5. Conclusion and future outlook
- References
- Chapter 7: Functionalized nanofibers for antimicrobial applications
- 1. Introduction
- 2. Principle of electrospinning
- 2.1. Types and processing of structured functional nanofiber
- 3. Method of functionalization of nanofibers
- 3.1. Physical methods
- 3.1.1. Blend electrospinning
- 3.1.2. Coaxial electrospinning
- 3.1.3. Emulsion electrospinning
- 3.2. Surface modification of polymers by chemical methods
- 3.2.1. Plasma treatment
- 3.2.2. Chemical surface degradation
- 3.2.3. Covalent binding
- 3.2.4. Esterification
- 3.3. Click reactions
- 3.4. Crosslinkers for surface modification
- 3.4.1. Genipin crosslinking
- 3.4.2. Aziridine
- 3.4.3. Transglutaminase
- 3.5. Radical polymerization
- 3.6. Noncovalent immobilization technique
- 4. Loading of antimicrobials into nanofibers
- 5. Surface-functionalized antimicrobial and antibacterial nanofibers
- 6. Electrospinning of functionalized nanofibers.
- 6.1. Cellulose spinning
- 6.2. PVA spinning
- 6.3. Polylysine spinning
- 7. Application of functional antimicrobial nanofibers
- 7.1. Delivery of drugs and other therapeutics
- 7.2. In the food packaging materials
- 7.3. In the production of antibacterial sterile attires and gloves
- 7.4. In water filtration
- 7.5. Role of nanofibers in air filtration
- 7.6. Tissue engineering
- 8. Conclusion and future perspective
- Acknowledgments
- References
- Chapter 8: Functionalized nanofiber-based drug delivery systems and biosensing devices
- 1. Introduction
- 2. Nanofibers: Synthesis, characterizations, and properties
- 3. Nanofibers for drug delivery systems
- 4. Nanofibers for biosensing
- 5. Conclusions and future perspectives
- References
- Chapter 9: Functionalized nanofiber for wound healing and wound dressing applications
- 1. Introduction
- 2. Wounds and their types
- 2.1. Wound healing
- 3. Nanofibers and wound healing
- 4. Nanofiber-based composites
- 4.1. Chitosan-based functionalized nanofiber
- 4.2. Cellulose-based functionalized nanofiber
- 4.3. Starch-based nanofibers
- 4.4. Silk fibroin-based functionalized nanofibers
- 4.5. Hyaluronic acid-based functionalized nanofiber
- 4.6. Collagen-based functionalized nanofibers
- 4.7. Other functionalized nanofibers
- 5. Conclusion and future perspectives
- Acknowledgments
- References
- Chapter 10: Surface coatings of functionalized nanofibers for property enhancement: Synthesis, characterizations, and app ...
- 1. Introduction
- 2. Fabrication of nanofiber
- 2.1. Electrospinning
- 2.2. Chemical vapor deposition
- 2.3. Centrifugal spinning
- 2.4. Phase separation
- 2.5. Drawing
- 2.6. Template synthesis
- 2.7. Self-assembly
- 2.8. Melt-blown technique
- 3. Various methods of functionalizing the nanofibers and characterizations
- 3.1. Plasma treatment.
- 3.2. Wet chemical treatment.