Functionalized Nanofibers : Synthesis and Industrial Applications

Functionalized Nanofibers: Synthesis and Industrial Applications presents the latest advances in the fabrication, design, processing, and properties of functionalized nanofibers for a range of advanced applications. Sections introduce fabrication, mechanisms, and design of functionalized nanofibers,...

Full description

Saved in:
Bibliographic Details
Other Authors Deshmukh, Kalim (Editor)
Format Electronic eBook
LanguageEnglish
Published Amsterdam, Netherlands : Elsevier Inc., [2023]
SeriesMicro & nano technologies
Subjects
Online AccessFull text
ISBN9780323994620
9780323994613
Physical Description1 online zdroj (984 stran)

Cover

Table of Contents:
  • Intro
  • Functionalized Nanofibers: Synthesis and Industrial Applications
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Electrospinning and nonelectrospinning techniques for the fabrication of nanofibers: Mechanisms, process param ...
  • 1. Introduction
  • 2. Fabrication techniques of NFs
  • 2.1. Electrospinning techniques: Fundamental mechanisms and experimental setup
  • 2.1.1. Melt electrospinning
  • 2.1.2. Coaxial and triaxial electrospinning
  • 2.1.3. Electrospraying
  • 2.1.4. Solution blowing
  • 2.1.5. Emulsion electrospinning
  • 2.1.6. Multineedle electrospinning
  • 2.1.7. Needleless electrospinning
  • 3. Parameters influencing the electrospinning process
  • 3.1. Process parameters
  • 3.1.1. Applied voltage
  • 3.1.2. Needle diameter
  • 3.1.3. Solution flow rate
  • 3.1.4. Collector to tip distance
  • 3.2. Solution parameter
  • 3.2.1. Concentration/solution viscosity
  • 3.2.2. Conductivity and surface tension
  • 3.2.3. Solvent selection
  • 3.3. Ambient conditions
  • 3.3.1. Humidity
  • 4. Nonelectrospinning techniques of NF fabrication
  • 4.1. Atomic layer deposition
  • 4.2. Vapor deposition technique
  • 4.3. Mechanical fabrication technique
  • 4.4. Template-assisted synthesis
  • 4.5. Hydrothermal method
  • 5. Conclusions and future perspective
  • References
  • Chapter 2: Multistructural nanofiber designs: Processing, properties, and applications of random, aligned, porous, core s ...
  • 1. Introduction
  • 2. Electrospinning process
  • 2.1. Dope properties
  • 2.2. Process conditions
  • 2.3. Environmental conditions
  • 3. Diverse morphologies of electrospun polymer nanofibers
  • 3.1. Primary structure
  • 3.2. Random nanofibers
  • 3.3. Aligned nanofibers
  • 3.4. Core/shell nanofiber structures
  • 3.5. Hollow nanofiber structure
  • 3.6. Secondary architecture
  • 4. Application of different morphological nanofibers by electrospinning.
  • 5. Summary and future perspective
  • References
  • Chapter 3: Surface functionalization techniques and characterization methods of electrospun nanofibers
  • 1. Introduction
  • 2. Principle of electrospinning and nanofiber synthesis
  • 2.1. Optimization of experimental parameters
  • 3. Surface functionalization techniques for electrospun nanofibers
  • 3.1. Chemical methods
  • 3.2. Wet chemical functionalization
  • 3.2.1. Aminolysis
  • 3.2.2. Hydrolysis
  • 3.3. Covalent grafting
  • 3.4. Plasma treatment
  • 3.5. Physical adsorption method
  • 4. Characterization methods
  • 4.1. Scanning electron microscope analysis
  • 4.2. Transmission electron microscope analysis
  • 4.3. Atomic force microscope analysis
  • 4.4. X-ray diffraction analysis
  • 4.5. Fourier transform infrared analysis
  • 4.6. Raman analysis
  • 4.7. Surface area analysis
  • 4.8. Pore size distribution and porosity
  • 4.8.1. Mercury intrusion porosimetry
  • 4.8.2. Liquid extrusion porosimetry
  • 4.8.3. Nuclear magnetic resonance
  • 4.9. Vibrating sample magnetometer analysis
  • 4.10. Mechanical property analysis
  • 4.10.1. Universal testing instrument
  • 4.10.2. Dynamic mechanical analysis
  • 4.11. Contact angle analysis
  • 4.12. X-ray photoelectron spectroscopy analysis
  • 4.13. Thermal analysis
  • 5. Conclusions and future prospects
  • Acknowledgments
  • References
  • Chapter 4: Application of low-temperature plasma surface modification technology in functionalized nanofibers
  • 1. Introduction
  • 2. Plasma technology for nanofiber surface modification
  • 2.1. Plasma generation and sources
  • 2.2. Mechanism of plasma interactions on the fiber surface
  • 2.2.1. Functionalization
  • 2.2.2. Etching
  • 2.2.3. Cleaning
  • 2.2.4. Polymerization
  • 3. Different nanofiber treatment by plasma
  • 3.1. Carbon fibers
  • 3.1.1. Fiber-matrix interface bonding enhancement by plasma treatment.
  • 3.1.2. Carbon fiber surface modification for better battery performance
  • 3.2. Metal oxide nanofibers
  • 3.3. Polymer nanofibers
  • 3.3.1. Biocompatibility
  • 3.3.2. Antibiosis
  • 4. Conclusions
  • References
  • Chapter 5: Preparation and functional applications of electrospun yarns
  • 1. Introduction
  • 2. Preparation of electrospinning nanofiber yarns
  • 2.1. The electric field-assisted yarn preparation
  • 2.2. Fiber film twisting
  • 2.3. Liquid vortex twisting
  • 2.4. Rotational twisting
  • 2.5. Air-assisted yarn preparation
  • 2.6. Other yarn preparation methods
  • 3. Preparation of composite nanofiber yarns
  • 3.1. Preparation of core-spun yarn
  • 3.2. Preparation of ultralow proportion nanofiber composite yarn
  • 3.3. Preparation of multicomponent nanofiber composite yarns
  • 4. Influencing factors and reinforcement methods of nanofiber yarn mechanical properties
  • 5. Application of nanofiber yarn
  • 5.1. Flexible wearable electronic devices
  • 5.1.1. Flexible stress-strain sensor
  • 5.1.2. Flexible supercapacitors
  • 5.1.3. Flexible gas sensor
  • 5.2. Biomedical textiles
  • 5.2.1. Surgical sutures
  • 5.2.2. Tissue engineering scaffolds
  • 5.2.3. Antibacterial yarn
  • 5.3. Other functional textiles
  • 5.3.1. Moisture-conducting yarn
  • 5.3.2. Other functional yarns
  • 6. Conclusion
  • Acknowledgments
  • References
  • Chapter 6: Functionalized nanofibers for tissue engineering and regenerative medicine
  • 1. Nanotechnology definition
  • 2. Synthesis of nanofibers
  • 2.1. Phase separation for nanofiber formation
  • 2.2. Self-assembly technique for nanofiber production
  • 2.3. Electrospinning technique for nanofiber formation
  • 2.3.1. Properties of nanofibers
  • 3. Nanofiber formation
  • 3.1. Natural biopolymers used for nanofiber formation
  • 3.1.1. Functionalization of cellulose and modified cellulose nanofibers.
  • 3.1.2. Functionalization of sodium alginate nanofibers
  • 3.1.3. Functionalized nanofibers based on chitin and chitosan biopolymers
  • 3.1.4. Functionalization of curdlan nanofibers
  • 3.1.5. Electrospinning of starch and modified starches
  • 3.2. Synthetic polymers
  • 3.2.1. Functionalization of poly(vinyl alcohol) nanofibers
  • 3.2.2. Functionalization of poly(vinyl pyrrolidone) nanofibers
  • 3.2.3. Functionalization of polyurethane nanofibers
  • 3.2.4. Functionalization of polycaprolactone (PCL) nanofibers
  • 4. Applications of functionalized nanofibers
  • 4.1. Musculoskeletal tissue engineering
  • 4.2. Nanofibers for bone tissue engineering
  • 4.3. Nanofibers for cartilage tissue engineering
  • 4.4. Nanofibers for ligament tissue engineering
  • 4.5. Nanofibers for skin tissue engineering
  • 4.6. Nanofibers for blood vessel tissue engineering
  • 4.7. Nanofibers for drug delivery
  • 5. Conclusion and future outlook
  • References
  • Chapter 7: Functionalized nanofibers for antimicrobial applications
  • 1. Introduction
  • 2. Principle of electrospinning
  • 2.1. Types and processing of structured functional nanofiber
  • 3. Method of functionalization of nanofibers
  • 3.1. Physical methods
  • 3.1.1. Blend electrospinning
  • 3.1.2. Coaxial electrospinning
  • 3.1.3. Emulsion electrospinning
  • 3.2. Surface modification of polymers by chemical methods
  • 3.2.1. Plasma treatment
  • 3.2.2. Chemical surface degradation
  • 3.2.3. Covalent binding
  • 3.2.4. Esterification
  • 3.3. Click reactions
  • 3.4. Crosslinkers for surface modification
  • 3.4.1. Genipin crosslinking
  • 3.4.2. Aziridine
  • 3.4.3. Transglutaminase
  • 3.5. Radical polymerization
  • 3.6. Noncovalent immobilization technique
  • 4. Loading of antimicrobials into nanofibers
  • 5. Surface-functionalized antimicrobial and antibacterial nanofibers
  • 6. Electrospinning of functionalized nanofibers.
  • 6.1. Cellulose spinning
  • 6.2. PVA spinning
  • 6.3. Polylysine spinning
  • 7. Application of functional antimicrobial nanofibers
  • 7.1. Delivery of drugs and other therapeutics
  • 7.2. In the food packaging materials
  • 7.3. In the production of antibacterial sterile attires and gloves
  • 7.4. In water filtration
  • 7.5. Role of nanofibers in air filtration
  • 7.6. Tissue engineering
  • 8. Conclusion and future perspective
  • Acknowledgments
  • References
  • Chapter 8: Functionalized nanofiber-based drug delivery systems and biosensing devices
  • 1. Introduction
  • 2. Nanofibers: Synthesis, characterizations, and properties
  • 3. Nanofibers for drug delivery systems
  • 4. Nanofibers for biosensing
  • 5. Conclusions and future perspectives
  • References
  • Chapter 9: Functionalized nanofiber for wound healing and wound dressing applications
  • 1. Introduction
  • 2. Wounds and their types
  • 2.1. Wound healing
  • 3. Nanofibers and wound healing
  • 4. Nanofiber-based composites
  • 4.1. Chitosan-based functionalized nanofiber
  • 4.2. Cellulose-based functionalized nanofiber
  • 4.3. Starch-based nanofibers
  • 4.4. Silk fibroin-based functionalized nanofibers
  • 4.5. Hyaluronic acid-based functionalized nanofiber
  • 4.6. Collagen-based functionalized nanofibers
  • 4.7. Other functionalized nanofibers
  • 5. Conclusion and future perspectives
  • Acknowledgments
  • References
  • Chapter 10: Surface coatings of functionalized nanofibers for property enhancement: Synthesis, characterizations, and app ...
  • 1. Introduction
  • 2. Fabrication of nanofiber
  • 2.1. Electrospinning
  • 2.2. Chemical vapor deposition
  • 2.3. Centrifugal spinning
  • 2.4. Phase separation
  • 2.5. Drawing
  • 2.6. Template synthesis
  • 2.7. Self-assembly
  • 2.8. Melt-blown technique
  • 3. Various methods of functionalizing the nanofibers and characterizations
  • 3.1. Plasma treatment.
  • 3.2. Wet chemical treatment.