Functionalized Nanofibers : Synthesis and Industrial Applications

Functionalized Nanofibers: Synthesis and Industrial Applications presents the latest advances in the fabrication, design, processing, and properties of functionalized nanofibers for a range of advanced applications. Sections introduce fabrication, mechanisms, and design of functionalized nanofibers,...

Full description

Saved in:
Bibliographic Details
Other Authors: Deshmukh, Kalim, (Editor)
Format: eBook
Language: English
Published: Amsterdam, Netherlands : Elsevier Inc., [2023]
Series: Micro & nano technologies
Subjects:
ISBN: 9780323994620
9780323994613
Physical Description: 1 online zdroj (984 stran)

Cover

Table of contents

LEADER 11718nam a2200469 i 4500
001 110914
003 CZ-ZlUTB
005 20240914115203.0
006 m o d |
007 cr#cnu||||||||
008 230613s2023 ne ob 001 0 eng d
999 |c 110914  |d 110914 
020 |a 9780323994620 
020 |z 9780323994613 
040 |a MiAaPQ  |b eng  |e rda  |c MiAaPQ  |d MiAaPQ 
245 0 0 |a Functionalized Nanofibers :  |b Synthesis and Industrial Applications /  |c edited by Kalim Deshmukh [and three others]. 
264 1 |a Amsterdam, Netherlands :  |b Elsevier Inc.,  |c [2023] 
264 4 |c ©2023 
300 |a 1 online zdroj (984 stran) 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a Micro and Nano Technologies Series 
504 |a Obsahuje bibliografické odkazy a index. 
505 0 |a Intro -- Functionalized Nanofibers: Synthesis and Industrial Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Electrospinning and nonelectrospinning techniques for the fabrication of nanofibers: Mechanisms, process param ... -- 1. Introduction -- 2. Fabrication techniques of NFs -- 2.1. Electrospinning techniques: Fundamental mechanisms and experimental setup -- 2.1.1. Melt electrospinning -- 2.1.2. Coaxial and triaxial electrospinning -- 2.1.3. Electrospraying -- 2.1.4. Solution blowing -- 2.1.5. Emulsion electrospinning -- 2.1.6. Multineedle electrospinning -- 2.1.7. Needleless electrospinning -- 3. Parameters influencing the electrospinning process -- 3.1. Process parameters -- 3.1.1. Applied voltage -- 3.1.2. Needle diameter -- 3.1.3. Solution flow rate -- 3.1.4. Collector to tip distance -- 3.2. Solution parameter -- 3.2.1. Concentration/solution viscosity -- 3.2.2. Conductivity and surface tension -- 3.2.3. Solvent selection -- 3.3. Ambient conditions -- 3.3.1. Humidity -- 4. Nonelectrospinning techniques of NF fabrication -- 4.1. Atomic layer deposition -- 4.2. Vapor deposition technique -- 4.3. Mechanical fabrication technique -- 4.4. Template-assisted synthesis -- 4.5. Hydrothermal method -- 5. Conclusions and future perspective -- References -- Chapter 2: Multistructural nanofiber designs: Processing, properties, and applications of random, aligned, porous, core s ... -- 1. Introduction -- 2. Electrospinning process -- 2.1. Dope properties -- 2.2. Process conditions -- 2.3. Environmental conditions -- 3. Diverse morphologies of electrospun polymer nanofibers -- 3.1. Primary structure -- 3.2. Random nanofibers -- 3.3. Aligned nanofibers -- 3.4. Core/shell nanofiber structures -- 3.5. Hollow nanofiber structure -- 3.6. Secondary architecture -- 4. Application of different morphological nanofibers by electrospinning. 
505 8 |a 5. Summary and future perspective -- References -- Chapter 3: Surface functionalization techniques and characterization methods of electrospun nanofibers -- 1. Introduction -- 2. Principle of electrospinning and nanofiber synthesis -- 2.1. Optimization of experimental parameters -- 3. Surface functionalization techniques for electrospun nanofibers -- 3.1. Chemical methods -- 3.2. Wet chemical functionalization -- 3.2.1. Aminolysis -- 3.2.2. Hydrolysis -- 3.3. Covalent grafting -- 3.4. Plasma treatment -- 3.5. Physical adsorption method -- 4. Characterization methods -- 4.1. Scanning electron microscope analysis -- 4.2. Transmission electron microscope analysis -- 4.3. Atomic force microscope analysis -- 4.4. X-ray diffraction analysis -- 4.5. Fourier transform infrared analysis -- 4.6. Raman analysis -- 4.7. Surface area analysis -- 4.8. Pore size distribution and porosity -- 4.8.1. Mercury intrusion porosimetry -- 4.8.2. Liquid extrusion porosimetry -- 4.8.3. Nuclear magnetic resonance -- 4.9. Vibrating sample magnetometer analysis -- 4.10. Mechanical property analysis -- 4.10.1. Universal testing instrument -- 4.10.2. Dynamic mechanical analysis -- 4.11. Contact angle analysis -- 4.12. X-ray photoelectron spectroscopy analysis -- 4.13. Thermal analysis -- 5. Conclusions and future prospects -- Acknowledgments -- References -- Chapter 4: Application of low-temperature plasma surface modification technology in functionalized nanofibers -- 1. Introduction -- 2. Plasma technology for nanofiber surface modification -- 2.1. Plasma generation and sources -- 2.2. Mechanism of plasma interactions on the fiber surface -- 2.2.1. Functionalization -- 2.2.2. Etching -- 2.2.3. Cleaning -- 2.2.4. Polymerization -- 3. Different nanofiber treatment by plasma -- 3.1. Carbon fibers -- 3.1.1. Fiber-matrix interface bonding enhancement by plasma treatment. 
505 8 |a 3.1.2. Carbon fiber surface modification for better battery performance -- 3.2. Metal oxide nanofibers -- 3.3. Polymer nanofibers -- 3.3.1. Biocompatibility -- 3.3.2. Antibiosis -- 4. Conclusions -- References -- Chapter 5: Preparation and functional applications of electrospun yarns -- 1. Introduction -- 2. Preparation of electrospinning nanofiber yarns -- 2.1. The electric field-assisted yarn preparation -- 2.2. Fiber film twisting -- 2.3. Liquid vortex twisting -- 2.4. Rotational twisting -- 2.5. Air-assisted yarn preparation -- 2.6. Other yarn preparation methods -- 3. Preparation of composite nanofiber yarns -- 3.1. Preparation of core-spun yarn -- 3.2. Preparation of ultralow proportion nanofiber composite yarn -- 3.3. Preparation of multicomponent nanofiber composite yarns -- 4. Influencing factors and reinforcement methods of nanofiber yarn mechanical properties -- 5. Application of nanofiber yarn -- 5.1. Flexible wearable electronic devices -- 5.1.1. Flexible stress-strain sensor -- 5.1.2. Flexible supercapacitors -- 5.1.3. Flexible gas sensor -- 5.2. Biomedical textiles -- 5.2.1. Surgical sutures -- 5.2.2. Tissue engineering scaffolds -- 5.2.3. Antibacterial yarn -- 5.3. Other functional textiles -- 5.3.1. Moisture-conducting yarn -- 5.3.2. Other functional yarns -- 6. Conclusion -- Acknowledgments -- References -- Chapter 6: Functionalized nanofibers for tissue engineering and regenerative medicine -- 1. Nanotechnology definition -- 2. Synthesis of nanofibers -- 2.1. Phase separation for nanofiber formation -- 2.2. Self-assembly technique for nanofiber production -- 2.3. Electrospinning technique for nanofiber formation -- 2.3.1. Properties of nanofibers -- 3. Nanofiber formation -- 3.1. Natural biopolymers used for nanofiber formation -- 3.1.1. Functionalization of cellulose and modified cellulose nanofibers. 
505 8 |a 3.1.2. Functionalization of sodium alginate nanofibers -- 3.1.3. Functionalized nanofibers based on chitin and chitosan biopolymers -- 3.1.4. Functionalization of curdlan nanofibers -- 3.1.5. Electrospinning of starch and modified starches -- 3.2. Synthetic polymers -- 3.2.1. Functionalization of poly(vinyl alcohol) nanofibers -- 3.2.2. Functionalization of poly(vinyl pyrrolidone) nanofibers -- 3.2.3. Functionalization of polyurethane nanofibers -- 3.2.4. Functionalization of polycaprolactone (PCL) nanofibers -- 4. Applications of functionalized nanofibers -- 4.1. Musculoskeletal tissue engineering -- 4.2. Nanofibers for bone tissue engineering -- 4.3. Nanofibers for cartilage tissue engineering -- 4.4. Nanofibers for ligament tissue engineering -- 4.5. Nanofibers for skin tissue engineering -- 4.6. Nanofibers for blood vessel tissue engineering -- 4.7. Nanofibers for drug delivery -- 5. Conclusion and future outlook -- References -- Chapter 7: Functionalized nanofibers for antimicrobial applications -- 1. Introduction -- 2. Principle of electrospinning -- 2.1. Types and processing of structured functional nanofiber -- 3. Method of functionalization of nanofibers -- 3.1. Physical methods -- 3.1.1. Blend electrospinning -- 3.1.2. Coaxial electrospinning -- 3.1.3. Emulsion electrospinning -- 3.2. Surface modification of polymers by chemical methods -- 3.2.1. Plasma treatment -- 3.2.2. Chemical surface degradation -- 3.2.3. Covalent binding -- 3.2.4. Esterification -- 3.3. Click reactions -- 3.4. Crosslinkers for surface modification -- 3.4.1. Genipin crosslinking -- 3.4.2. Aziridine -- 3.4.3. Transglutaminase -- 3.5. Radical polymerization -- 3.6. Noncovalent immobilization technique -- 4. Loading of antimicrobials into nanofibers -- 5. Surface-functionalized antimicrobial and antibacterial nanofibers -- 6. Electrospinning of functionalized nanofibers. 
505 8 |a 6.1. Cellulose spinning -- 6.2. PVA spinning -- 6.3. Polylysine spinning -- 7. Application of functional antimicrobial nanofibers -- 7.1. Delivery of drugs and other therapeutics -- 7.2. In the food packaging materials -- 7.3. In the production of antibacterial sterile attires and gloves -- 7.4. In water filtration -- 7.5. Role of nanofibers in air filtration -- 7.6. Tissue engineering -- 8. Conclusion and future perspective -- Acknowledgments -- References -- Chapter 8: Functionalized nanofiber-based drug delivery systems and biosensing devices -- 1. Introduction -- 2. Nanofibers: Synthesis, characterizations, and properties -- 3. Nanofibers for drug delivery systems -- 4. Nanofibers for biosensing -- 5. Conclusions and future perspectives -- References -- Chapter 9: Functionalized nanofiber for wound healing and wound dressing applications -- 1. Introduction -- 2. Wounds and their types -- 2.1. Wound healing -- 3. Nanofibers and wound healing -- 4. Nanofiber-based composites -- 4.1. Chitosan-based functionalized nanofiber -- 4.2. Cellulose-based functionalized nanofiber -- 4.3. Starch-based nanofibers -- 4.4. Silk fibroin-based functionalized nanofibers -- 4.5. Hyaluronic acid-based functionalized nanofiber -- 4.6. Collagen-based functionalized nanofibers -- 4.7. Other functionalized nanofibers -- 5. Conclusion and future perspectives -- Acknowledgments -- References -- Chapter 10: Surface coatings of functionalized nanofibers for property enhancement: Synthesis, characterizations, and app ... -- 1. Introduction -- 2. Fabrication of nanofiber -- 2.1. Electrospinning -- 2.2. Chemical vapor deposition -- 2.3. Centrifugal spinning -- 2.4. Phase separation -- 2.5. Drawing -- 2.6. Template synthesis -- 2.7. Self-assembly -- 2.8. Melt-blown technique -- 3. Various methods of functionalizing the nanofibers and characterizations -- 3.1. Plasma treatment. 
505 8 |a 3.2. Wet chemical treatment. 
520 |a Functionalized Nanofibers: Synthesis and Industrial Applications presents the latest advances in the fabrication, design, processing, and properties of functionalized nanofibers for a range of advanced applications. Sections introduce fabrication, mechanisms, and design of functionalized nanofibers, explaining electrospinning and non-electrospinning techniques, optimization of structural designs, surface functionalization techniques, and characterization methods. Subsequent sections focus on specific application areas, highlighting preparation methods and applications of functionalized nanofibers across biomedicine, surfaces and coatings, food, environment, energy, electronics, and textiles. Finally, environmental impact and safety and legal aspects related to the utilization of functionalized nanofibers are considered. 
650 0 |a Nanofibers  |x Design and construction. 
650 0 |a Nanofibers  |x Industrial applications. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Deshmukh, Kalim,  |e editor. 
830 0 |a Micro & nano technologies 
856 4 1 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3405513&authtype=ip,shib&custid=s3936755  |y Plný text 
910 |a ZLD002 
942 |2 udc 
992 |c EBOOK-TN  |c EBSCO 
993 |x NEPOSILAT  |y EIZ