Linear dynamical quantum systems : analysis, synthesis, and control

This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theo...

Full description

Saved in:
Bibliographic Details
Main Authors Nurdin, Hendra I. (Author), Yamamoto, Naoki (Author)
Format Electronic eBook
LanguageEnglish
Published Cham, Switzerland : Springer, 2017.
SeriesCommunications and control engineering.
Subjects
Online AccessFull text
ISBN9783319552019
9783319551999
Physical Description1 online resource (xv, 262 pages) : illustrations

Cover

LEADER 00000cam a2200000Ii 4500
001 100081
003 CZ-ZlUTB
005 20251008112007.0
006 m o d
007 cr cnu|||unuuu
008 170516s2017 sz a ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d EBLCP  |d YDX  |d N$T  |d OCLCF  |d UAB  |d ESU  |d AZU  |d UPM  |d IOG  |d COO  |d MERER  |d OCLCQ  |d U3W  |d CAUOI  |d KSU  |d EZ9  |d VT2  |d OCLCQ  |d WYU  |d UKMGB  |d AUD  |d UKAHL  |d OCLCQ  |d ERF  |d UKBTH  |d LEATE  |d OCLCQ 
020 |a 9783319552019  |q (electronic bk.) 
020 |z 9783319551999  |q (print) 
024 7 |a 10.1007/978-3-319-55201-9  |2 doi 
035 |a (OCoLC)987302195  |z (OCoLC)987352491  |z (OCoLC)992450819  |z (OCoLC)992906725  |z (OCoLC)999366971  |z (OCoLC)1005771321  |z (OCoLC)1012043605  |z (OCoLC)1048098321  |z (OCoLC)1066468576  |z (OCoLC)1066650763  |z (OCoLC)1086464654  |z (OCoLC)1112597713  |z (OCoLC)1113454378  |z (OCoLC)1113543865  |z (OCoLC)1117226438  |z (OCoLC)1122845617  |z (OCoLC)1125672009 
100 1 |a Nurdin, Hendra I.,  |e author. 
245 1 0 |a Linear dynamical quantum systems :  |b analysis, synthesis, and control /  |c Hendra I Nurdin, Naoki Yamamoto. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2017. 
300 |a 1 online resource (xv, 262 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a Communications and control engineering 
504 |a Includes bibliographical references and index. 
505 0 |a Preface; Contents; Notation; 1 Introduction; 1.1 Quantum Feedback Control: A Brief History; 1.2 Classical Linear Systems and Control Theory; 1.2.1 Classical Linear Systems; 1.2.2 Linear Systems and Control Theory; 1.2.3 Toward Systems and Control Theory for Linear Quantum Systems; 1.3 Closed Linear Quantum Systems; 1.4 Open Quantum Systems, the Markov #x83;; 1.4.1 Open Quantum Systems; 1.4.2 Illustration of the Markov Approximation and Markov Open Quantum System Dynamics; 1.5 Linear Dynamical Quantum Systems: Description and Physical Examples; 1.5.1 Optical Cavities. 
505 8 |a 1.5.2 Non-degenerate Optical Parametric Amplifiers1.5.3 Degenerate Parametric Amplifiers/Optical Parametric Oscillators; 1.5.4 Opto-mechanical Systems; 1.5.5 Large Atomic Ensemble; References; 2 Mathematical Modeling of Linear Dynamical Quantum Systems; 2.1 Quantum Stochastic Calculus; 2.1.1 The Boson Fock Space, Exponential Vectors, and Fundamental Processes on the Fock Space; 2.1.2 Adapted Processes and Quantum Stochastic Integrals; 2.1.3 The Quantum Itō Table in Vacuum and the Quantum Itō Rule; 2.1.4 The Hudson -- Parthasarathy Quantum Stochastic Differential Equation. 
505 8 |a 2.2 Linear Dynamical Quantum Systems: Joint Unitary Evolution of Oscillators and Boson Fields2.3 Equations of Motion: Real Quadrature Form and Complex Mode Form; 2.3.1 Real Quadrature Form; 2.3.2 Complex Mode Form; 2.3.3 Transfer Function of Linear Dynamical Quantum Systems; 2.4 Inclusion of Idealized Static Transformations on Bosonic Fields #x83;; 2.4.1 Completely Passive Linear Dynamical Quantum Systems; 2.5 Physical Realizability Conditions and Parameterizations #x83;; 2.5.1 Physical Realizability Conditions for Linear QSDEs; 2.5.2 Parameterization of Linear Dynamical Quantum Systems. 
505 8 |a 2.5.3 Linear Dynamical Quantum Systems with Less Outputs Than Inputs2.6 Stability of Linear Quantum Systems; 2.7 Gaussian States; 2.7.1 Gaussian State of a Collection of Single-Mode Oscillators; 2.7.2 Gaussian States of the Field and Their Fock Space Representation; 2.7.3 Coherent States; 2.7.4 Coherent States of a Single-Mode Oscillator; 2.7.5 Coherent States of a Bosonic Field; References; 3 Realization Theory for Linear Dynamical Quantum Systems; 3.1 Architecture for Strict Realization; 3.1.1 The Concatenation and Series Product and Reducible Quantum Networks; 3.1.2 Main Synthesis Theorem. 
505 8 |a 3.1.3 Systematic Synthesis of Linear Quantum Systems3.1.4 Illustrative Synthesis Example; 3.2 Architecture for Strict Realization Using Quantum Feedback Networks; 3.2.1 The Model Matrix and Concatenation of Model Matrices; 3.2.2 Edges, Elimination of Edges, and Reduced Markov Models; 3.2.3 Main Synthesis Results; 3.2.4 Synthesis of Completely Passive Systems; 3.3 Transfer Function Realization; 3.3.1 Pure Cascade Realization of the Transfer Function of Linear Quantum Systems; 3.3.2 Conditions for Realizability by a Pure Cascade Connection. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics will find this book to be a valuable treatment of the control of an important class of quantum systems. The material presented here will also interest physicists working in optics, quantum optics, quantum information theory and other quantum-physical disciplines. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Quantum theory. 
650 0 |a Linear systems. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Yamamoto, Naoki,  |e author. 
776 0 8 |i Print version:  |a Nurdin, Hendra I.  |t Linear dynamical quantum systems.  |d Cham, Switzerland : Springer, 2017  |z 331955199X  |z 9783319551999  |w (OCoLC)972773111 
830 0 |a Communications and control engineering. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-319-55201-9 
992 |c NTK-SpringerENG 
999 |c 100081  |d 100081 
993 |x NEPOSILAT  |y EIZ