Roadside video data analysis : deep learning

This book highlights the methods and applications for roadside video data analysis, with a particular focus on the use of deep learning to solve roadside video data segmentation and classification problems. It describes system architectures and methodologies that are specifically built upon learning...

Full description

Saved in:
Bibliographic Details
Main Authors Verma, Brijesh (Author), Zhang, Ligang (Author), Stockwell, David (Author)
Format Electronic eBook
LanguageEnglish
Published Singapore : Springer, 2017.
SeriesStudies in computational intelligence ; v. 711.
Subjects
Online AccessFull text
ISBN9789811045394
9789811045387
ISSN1860-949X ;
Physical Description1 online resource (xxv, 189 pages) : illustrations (some color)

Cover

LEADER 00000cam a2200000Ii 4500
001 100051
003 CZ-ZlUTB
005 20251008112006.0
006 m o d
007 cr cnu|||unuuu
008 170502s2017 si a ob 000 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d UAB  |d ESU  |d AZU  |d UPM  |d IOG  |d COO  |d OTZ  |d VT2  |d OCLCQ  |d U3W  |d CAUOI  |d OCLCF  |d KSU  |d EBLCP  |d WYU  |d UKMGB  |d OCLCQ  |d ERF  |d UKBTH  |d LEATE  |d OCLCQ  |d LQU  |d OCLCQ 
020 |a 9789811045394  |q (electronic bk.) 
020 |z 9789811045387  |q (print) 
024 7 |a 10.1007/978-981-10-4539-4  |2 doi 
024 8 |a 10.1007/978-981-10-4 
035 |a (OCoLC)985096371  |z (OCoLC)985681685  |z (OCoLC)985840413  |z (OCoLC)986057260  |z (OCoLC)986493666  |z (OCoLC)986731136  |z (OCoLC)986920356  |z (OCoLC)988383480  |z (OCoLC)988560177  |z (OCoLC)988850387  |z (OCoLC)999550450  |z (OCoLC)1005772877  |z (OCoLC)1011787604  |z (OCoLC)1036287886  |z (OCoLC)1048148155  |z (OCoLC)1066424513  |z (OCoLC)1086562701  |z (OCoLC)1112557069  |z (OCoLC)1113084674  |z (OCoLC)1113389042  |z (OCoLC)1116199379  |z (OCoLC)1122817402  |z (OCoLC)1127118929  |z (OCoLC)1135629843  |z (OCoLC)1155939824 
100 1 |a Verma, Brijesh,  |e author. 
245 1 0 |a Roadside video data analysis :  |b deep learning /  |c Brijesh Verma, Ligang Zhang, David Stockwell. 
264 1 |a Singapore :  |b Springer,  |c 2017. 
300 |a 1 online resource (xxv, 189 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a Studies in computational intelligence,  |x 1860-949X ;  |v volume 711 
504 |a Includes bibliographical references. 
505 0 |a Chapter 1: Introduction -- Chapter 2: Roadside Video Data Analysis Framework -- Chapter 3: Non-Deep Learning Techniques for Roadside Video Data Analysis -- Chapter 4: Deep Learning Techniques for Roadside Video Data Analysis -- Chapter 5: Case Study: Roadside Video Data Analysis for Fire Risk Assessment -- Chapter 6: Conclusion and Future Insight -- References. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book highlights the methods and applications for roadside video data analysis, with a particular focus on the use of deep learning to solve roadside video data segmentation and classification problems. It describes system architectures and methodologies that are specifically built upon learning concepts for roadside video data processing, and offers a detailed analysis of the segmentation, feature extraction and classification processes. Lastly, it demonstrates the applications of roadside video data analysis including scene labelling, roadside vegetation classification and vegetation biomass estimation in fire risk assessment. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Machine learning. 
650 0 |a Data mining. 
650 0 |a Digital video  |x Data processing. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Zhang, Ligang,  |e author. 
700 1 |a Stockwell, David,  |e author. 
776 0 8 |i Print version:  |a Verma, Brijesh.  |t Roadside video data analysis.  |d Singapore : Springer, 2017  |z 9789811045387  |z 9811045380  |w (OCoLC)978290369 
830 0 |a Studies in computational intelligence ;  |v v. 711.  |x 1860-949X 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-981-10-4539-4 
992 |c NTK-SpringerENG 
999 |c 100051  |d 100051 
993 |x NEPOSILAT  |y EIZ