Artificial intelligence in label-free microscopy : biological cell classification by time stretch
This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-...
Saved in:
Main Authors: | , , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Cham, Switzerland :
Springer,
2017.
|
Subjects: | |
ISBN: | 9783319514482 9783319514475 |
Physical Description: | 1 online resource (xxxiii, 134 pages) : color illustrations |
LEADER | 06048cam a2200481Ii 4500 | ||
---|---|---|---|
001 | 100024 | ||
003 | CZ-ZlUTB | ||
005 | 20240914112447.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 170424s2017 sz a ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d GW5XE |d N$T |d EBLCP |d YDX |d UAB |d MERER |d ESU |d AZU |d UPM |d OCLCF |d OCLCQ |d VT2 |d OTZ |d OCLCQ |d IOG |d U3W |d CAUOI |d KSU |d EZ9 |d WYU |d OCLCQ |d UKMGB |d UKAHL |d OCLCQ |d ERF |d UKBTH |d LEATE |d OCLCQ | ||
020 | |a 9783319514482 |q (electronic bk.) | ||
020 | |z 9783319514475 |q (print) | ||
024 | 7 | |a 10.1007/978-3-319-51448-2 |2 doi | |
035 | |a (OCoLC)983797028 |z (OCoLC)984271606 |z (OCoLC)984558082 |z (OCoLC)985318964 |z (OCoLC)985375234 |z (OCoLC)985491780 |z (OCoLC)985680898 |z (OCoLC)985837311 |z (OCoLC)986131933 |z (OCoLC)986490446 |z (OCoLC)986638318 |z (OCoLC)986887992 |z (OCoLC)988377246 |z (OCoLC)999412196 |z (OCoLC)1005837394 |z (OCoLC)1012078739 |z (OCoLC)1036262763 |z (OCoLC)1048160528 |z (OCoLC)1066636813 |z (OCoLC)1086463372 |z (OCoLC)1112538601 |z (OCoLC)1113421388 |z (OCoLC)1113577042 |z (OCoLC)1115940787 |z (OCoLC)1122816384 |z (OCoLC)1127187653 | ||
100 | 1 | |a Mahjoubfar, Ata, |e author. | |
245 | 1 | 0 | |a Artificial intelligence in label-free microscopy : |b biological cell classification by time stretch / |c Ata Mahjoubfar, Claire Lifan Chen, Bahram Jalali. |
264 | 1 | |a Cham, Switzerland : |b Springer, |c 2017. | |
300 | |a 1 online resource (xxxiii, 134 pages) : |b color illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a počítač |b c |2 rdamedia | ||
338 | |a online zdroj |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface; Acknowledgements; Contents; List of Figures; List of Tables; Part I Time Stretch Imaging; 1 Introduction; 2 Time Stretch; 2.1 Time Stretch Imaging; 2.2 Cell Classification Using Time Stretch Imaging; 2.3 Label-Free Phenotypic Screening; 2.4 Warped Time Stretch for Data Compression; Part II Inspection and Vision; 3 Nanometer-Resolved Imaging Vibrometer; 3.1 Introduction; 3.2 Experimental Demonstration; 3.3 Theoretical Study of the Vibrometer Performance; 3.4 Experimental Results; 3.5 Conclusion; 4 Three-Dimensional Ultrafast Laser Scanner; 4.1 Introduction. | |
505 | 8 | |a 4.2 Principle of Hybrid Dispersion Laser Scanner4.3 Applications of Hybrid Dispersion Laser Scanner; Part III Biomedical Applications; 5 Label-Free High-Throughput Phenotypic Screening; 5.1 Introduction; 5.2 Experimental Setup; 5.3 Results and Discussion; 5.4 Conclusion; 6 Time Stretch Quantitative Phase Imaging; 6.1 Background; 6.2 Time Stretch Quantitative Phase Imaging; 6.2.1 Overview; 6.2.2 Imaging System; 6.2.3 System Performance and Resolvable Points; 6.2.4 Microfluidic Channel Design and Fabrication; 6.2.5 Coherent Detection and Phase Extraction; 6.2.6 Cell Transmittance Extraction. | |
505 | 8 | |a 6.2.7 Image Reconstruction6.3 Image Processing Pipeline; 6.3.1 Feature Extraction; 6.3.2 Multivariate Features Enabled by Sensor Fusion; 6.3.3 System Calibration; 6.4 Conclusion; Part IV Big Data and Artificial Intelligence; 7 Big Data Acquisition and Processing in Real-Time; 7.1 Introduction; 7.2 Technical Description of the Acquisition System; 7.3 Big Data Acquisition Results; 7.4 Conclusion; 8 Deep Learning and Classification; 8.1 Background; 8.2 Machine Learning; 8.3 Applications; 8.3.1 Blood Screening: Demonstration in Classification of OT-II and SW-480 Cells. | |
505 | 8 | |a 8.3.2 Biofuel: Demonstration in Algae Lipid Content Classification8.4 Further Discussions in Machine Learning; 8.4.1 Learning Curves; 8.4.2 Principal Component Analysis (PCA); 8.4.3 Cross Validation; 8.4.4 Computation Time; 8.4.5 Data Cleaning; 8.5 Conclusion; Part V Data Compression; 9 Optical Data Compression in Time Stretch Imaging; 9.1 Background; 9.2 Warped Stretch Imaging; 9.3 Optical Image Compression; 9.4 Experimental Design and Results; 9.5 Conclusion; 10 Design of Warped Stretch Transform; 10.1 Overview; 10.2 Kernel Design; 10.2.1 Spectral Resolution. | |
505 | 8 | |a 10.2.2 Group Delay Profile Design10.2.3 Simulation Model; 10.2.4 Spectrograms; 10.3 Discussion; 10.4 Conclusion; 11 Concluding Remarks and Future Work; References; Index. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis." Demonstrates how machine learning is used in high-speed microscopy imaging to facilitate medical diagnosis; " Provides a systematic and comprehensive illustration of time stretch technology; " Enables multidisciplinary application, including industrial, biomedical, and artificial intelligence. | ||
590 | |a SpringerLink |b Springer Complete eBooks | ||
650 | 0 | |a Artificial intelligence |x Biological applications. | |
650 | 0 | |a Microscopy. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Chen, Claire Lifan, |e author. | |
700 | 1 | |a Jalali, B., |e author. | |
776 | 0 | 8 | |i Print version: |a Mahjoubfar, Ata. |t Artificial intelligence in label-free microscopy. |d Cham, Switzerland : Springer, 2017 |z 3319514474 |z 9783319514475 |w (OCoLC)964379422 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-319-51448-2 |y Plný text |
992 | |c NTK-SpringerENG | ||
999 | |c 100024 |d 100024 | ||
993 | |x NEPOSILAT |y EIZ |